期刊文献+

基于仿生视觉机制的红外与可见光图像融合 被引量:1

Infrared and Visible Image Fusion Based on Bionic Vision Imaging Mechanism
下载PDF
导出
摘要 为实现红外图像与可见光图像的融合,设计了以响尾蛇的视觉成像机制为基础的红外图像与可见光图像融合神经网络结构。首先根据双模式细胞的6种响应模式,得到红外和可见光图像的6种响应结果,然后以视觉感受野数学模型为基础,将6种双模式细胞响应输入到由ON对抗系统和OFF对抗系统组成的双层网络结构中,最后输出R、G和B 3个通道的映射值及伪彩色图像增强结果。分别对4组经过配准的红外和可见光图像进行融合,将该方法融合结果与经典的Waxman方法融合结果进行了对比,实验结果表明,所设计的网络结构得到的融合图像效果较好,信息熵和平均梯度均优于经典的Waxman方法融合结果。 In order to realize the fusion of infrared image and visible image,a neural network structure of infrared image and visible image fusion based on the visual imaging mechanism of rattlesnake is designed.Firstly,according to the six response modes of dual-mode cells,six response results of infrared and visible image are obtained. Then,based on the mathematical model of visual receptive field,the neural network structure of infrared image and visible image fusion is designed,and six kinds of dual-mode cell responses are input into a two-layer network structure composed of on countermeasure system and off countermeasure system. Finally,the mapping values of R,G and B channels and the pseudo color image enhancement results are output. Four groups of registered infrared and visible images are fused respectively. And the fusion results are compared with the classical Waxman method. The experimental results show that the fusion image effect of the designed network structure is better,and the information entropy and average gradient are better than the classical Waxman method.
作者 陈松 王西泉 陈俊彪 CHEN Song;WANG Xiquan;CHEN Junbiao(Test Technology Research Center,Norinco Group Testing and Research Institute,Huayin 714200,China)
出处 《吉林大学学报(信息科学版)》 CAS 2021年第3期276-281,共6页 Journal of Jilin University(Information Science Edition)
基金 国防科工局稳定支持经费基金资助项目。
关键词 仿生 红外图像 可见光图像 图像融合 bionics infrared image visible image image fusion
  • 相关文献

参考文献2

二级参考文献21

  • 1倪国强.多波段图像融合算法研究及其新发展(Ⅱ)[J].光电子技术与信息,2001,14(6):1-6. 被引量:55
  • 2倪国强.基于视觉神经动力学的图像融合与处理技术若干新进展[J].激光与红外,2005,35(11):817-821. 被引量:7
  • 3张彬,许廷发,黄光华,倪国强.基于小波框架的红外/可见光图像融合[J].光学技术,2007,33(3):334-336. 被引量:6
  • 4Mallat S G. Multifrequency channel decomposition of image and wavelet models[ J]. IEEE Transactions on Acoustics, Speech and Signal Processing. 1989, 37:2091 -2110.
  • 5Newman E A, Hartline P H. Integration of visual and infrared information in bimodal neurons of the rattlesnake optic tectum[ J]. Science, 1981,213 (8) :789 - 791.
  • 6Campell A L, Naik R R, Soward L, et al. Biological infrared imaging and sensing[J]. Micron,2002,33 (2) :211 -225.
  • 7Moon C,Terashima S. Response of the infrared receptors of a crotaline snake to ethanol [ J ]. Neuroscience Letters,2002,334:29 - 32.
  • 8Grace M S, Woodward O M. Altered visual experience and acute visual deprivation affect predatory targeting by infrared - imaging boid Snakes [ J ]. Brain Research, 2001,919:250 - 258.
  • 9Terashima S, Ogawa K. Degeneration of infrared receptor terminals of snakes caused by capsaicin [ J ]. Brain Research,2002,958:468 - 471.
  • 10Waxman A M,Gove A N, Fay D A, et al. Color night vision: opponent processing in the fusion of visible and IR imagery[ J]. Neural Networks, 1997,10( 1 ) :1 -6.

共引文献11

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部