期刊文献+

基于BERT多层网络的医疗实体抽取模型研究

Research on Medical Entity Extraction Model Based on the BERT Multi-layer Network
下载PDF
导出
摘要 电子病历是由医生根据病人描述和检查结果进行推断总结出来的,是以非结构化文本形式进行存储和管理,是医疗信息化的核心数据资产,其基本信息单元是医疗实体。传统的实体识别方法是基于规则、词典机器学习的方法,这些在性能、效率和准确度上难以满足医疗信息化的发展需求。本文提出基于BERT的多层网络模型,简称为BBC,并将其应用于克拉玛依市中心医院电子病历信息抽取中,提取腹部超声检查结果中的症状实体。实验结果表明,本文提出的模型显著优于现有的方法,实体预测的F1值提升了2.3%。 Electronic medical records are deduced and summarized by doctors based on patient description and examination results. They are stored and managed in the form of unstructured text. It is the core data asset of medical informatization, and its basic information unit is medical entity. The traditional entity recognition method is based on rules and dictionary machine learning, which is difficult to meet the development needs of medical informatization in terms of performance, efficiency and accuracy. This paper proposes a multi-layer network model based on BERT, referred to as BBC, and applies it to the electronic medical records information extraction of Karamay Central Hospital to extract symptom entities in the results of abdominal ultrasound examination. The experimental results show that the model proposed in this paper is significantly better than the existing methods, and the F1 value of entity prediction is increased by 2.3%.
作者 魏小林 彭宇明 张铁军 WEI Xiao-lin;PENG Yu-ming;ZHANG Tie-jun(Karamay Central Hospital of Xinjiang,Karamay 834000,Xinjiang Uygur Autonomous Region,P.R.C)
出处 《中国数字医学》 2021年第5期36-40,共5页 China Digital Medicine
关键词 电子病历 医疗实体抽取 BERT 多层网络模型 electronic medical records medical entity extraction BERT multi-layer network model
  • 相关文献

参考文献7

二级参考文献167

  • 1张坤丽,赵旭,关同峰,尚柏羽,李羽蒙,昝红英.面向医疗文本的实体及关系标注平台的构建及应用[J].中文信息学报,2020,34(6):36-44. 被引量:12
  • 2昝红英,刘涛,牛常勇,赵悦淑,张坤丽,穗志方.面向儿科疾病的命名实体及实体关系标注语料库构建及应用[J].中文信息学报,2020,34(5):19-26. 被引量:17
  • 3车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 4林东,邵军力.医学诊疗领域通用专家系统设计与实现[J].自动化学报,1995,21(3):380-382. 被引量:6
  • 5中华人民共和国卫生部.电子病历基本规范(试行)[Online],available:http://www.gov.cn/zwgk/2010-03/04/content_1547432.htm,December27,2013.
  • 6Wasserman R C. Electronic medical records (EMRs), epi- demiology, and epistemology: reflections on EMRs and fu- ture pediatric clinical research. Academic Pediatrics, 2011, 11(4): 280-287.
  • 7Uzuner O, Mailoa J, Ryan R, Sibanda T. Semantic relations for problem-oriented medical records. Artificial Intelligence in Medicine, 2010, 50(2): 63-73.
  • 8Demner-Fushman D, Chapman W W, McDonald C J. What can natural language processing do for clinical decision sup- port? Journal of Bioxnedical Informatics, 2009, 42(5): 760- 772.
  • 9Eysenbach G. Recent advances: consumer health informat- ics. British Medical Journal, 2000, 320(7251): 1713-1716.
  • 10Sager N, Friedman C, Lyman M S. Review of Medical lan- guage processing: computer management of narrative data. Computational Linguistics, 1989, 15(3): 195-198.

共引文献281

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部