期刊文献+

基于MGA-PSO的云计算多目标任务调度 被引量:10

MULTI-OBJECTIVE TASK SCHEDULING OF CLOUD COMPUTING BASED ON MGA-PSO
下载PDF
导出
摘要 为了提高云计算任务调度的效率,将微生物遗传算法(MGA)和改进的粒子群算法(PSO)融合成MGA-PSO算法用于云计算任务调度。综合任务完工时间、任务执行成本及虚拟机负载均衡三个目标构造适应度函数,以此寻找任务调度的最优解;对粒子群算法进行改进,使用动态惯性权重策略以提高算法的自适应搜索能力;在任务调度前期使用MGA算法缩小求解空间,在任务调度后期使用改进的PSO快速收敛到最优解。仿真实验表明:与其他三种算法相比,该算法有较快的收敛速度和较强的寻优能力;在云计算任务调度中,不仅能减少任务完工时间和执行成本,还能优化虚拟机的负载。 In order to improve the scheduling efficiency of cloud computing tasks,microbial genetic algorithm(MGA)and the improved particle swarm optimization(PSO)are merged into MGA-PSO for cloud computing task scheduling.The three objectives of the task completion time,task execution cost and virtual machine load balancing construct the fitness function to find the optimal solution of the task scheduling.The PSO was improved,and the dynamic inertia weight strategy was used to improve the adaptive search ability of the algorithm.In the early stage of task scheduling,the MGA was adopted to reduce the solution space,and the improved PSO was used to rapidly converge to the optimal solution in the later stage of task scheduling.The simulation experiments show that compared with the other three algorithms,this algorithm has faster convergence speed and stronger optimization ability.In cloud computing task scheduling,it can not only reduce task completion time and execution cost,but also optimize the load in the virtual machine.
作者 孙长亚 王向文 Sun Changya;Wang Xiangwen(College of Computer Science and Technology,Shanghai University of Electric Power,Shanghai 200090,China;College of Electronic and Information Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
出处 《计算机应用与软件》 北大核心 2021年第6期212-218,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61671296)。
关键词 云计算 任务调度 微生物遗传算法 粒子群算法 多目标 Cloud computing Task scheduling Microbial genetic algorithm Particle swarm optimization Multi-objective
  • 相关文献

参考文献6

二级参考文献65

  • 1孙雪冬,徐晓飞,王刚.基于有向超图的工作流资源分配均衡优化方法[J].电子学报,2005,33(8):1370-1374. 被引量:12
  • 2唐磊,廖渊,李明树,淮晓永.面向普适计算的服务构件动态部署问题及算法[J].计算机研究与发展,2007,44(5):815-822. 被引量:10
  • 3汤海鹰,许鲁.基于服务部署的高可用模型及其可用性分配算法[J].计算机学报,2007,30(10):1731-1739. 被引量:4
  • 4Andrzejak A, Kondo D, Anderson D P. Exploiting non-dedicated resources for cloud computing EA]. The 12th IEEE/IFIP (NOMS) [C]. Osaka, Japan, 2010: 19-23.
  • 5Vincenzo D, Cunsolo, Diste{anos, et al. Clound home: bridging the gap between volunteer and cloud computing EA. ICIC [C]. 2009, 1. 423-432.
  • 6Armbmst M,Fox A,Griffith R,et al.Above the Clouds:A Berkeley View of Cloud Computing[R].University of California,Berkeley,Technical Report:UCB/EECS-2009-28,2009.
  • 7Dorigo M,Blum C.Ant Colony Optimization Theory:A Survey[J].Theoretical Computer Science,2005,344(2/3):243-278.
  • 8Gao Y.A Multi-objective Ant Colony System Algorithm for Virtual Machine Placement in Cloud Computing[J].Journal of Computer and System Sciences,2013,79(8):1230-1242.
  • 9Dorigo M,Birattari M,Stutzel T.Ant Colony Optimization[J].IEEE Computational Intelligence Magazine,2006,1(4):28-39.
  • 10Huang Qiyi,Huang Tinglei.An Optimistic Job Scheduling Strategy Based on Qo S for Cloud Com-puting[C]//Proceedings of 2010 IEEE International Conference on Intelligent Computing and Integrated Systems.[S.l.]:IEEE Press,2010:673-675.

共引文献140

同被引文献88

引证文献10

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部