期刊文献+

基于双通道多特征融合的电力负荷智能感知方法 被引量:8

Intelligent Power Load Identification Method Based on Dual-channel and Multi-feature Fusion
下载PDF
导出
摘要 负荷识别是分析用户用电行为的主要工具之一。提高负荷识别的精度对于开展用能监测服务、实现节能降损具有重要意义。提出了一种基于双通道多特征融合的电力负荷智能感知方法。首先,从电器设备的基本属性出发,分析了电流、谐波、功率等数值特征以及电压-电流(V-I)轨迹图像特征对负荷识别的影响;其次,考虑了特征之间的互补性,分别采用主成分分析-神经网络(principal component analysis-back propagation,PCA-BP)算法和卷积神经网络算法将数值特征和图像特征以不同通道在高维空间进行深度融合;最后,采用Softmax分类算法对融合后的高级特征和设备标签进行有监督的学习,从而实现了不同类别电器设备的有效辨识。算例测试结果显示,所提出方法的负荷识别准确率高达94.55%。该结果充分说明了将多种特征进行高维空间融合,可以更全面、立体地反映设备的本质属性,提高算法的识别精度。 Load identification is one of the main tools to analyze the behavior of electric power consumers.It is of great significance to improve the accuracy of load identification for power monitoring and energy saving.An intelligent load identification method based on dual channel and multi-feature fusion was presented.Firstly,starting from the basic properties of electrical equipment,the influence of current,harmonic,power and other numerical features as well as V-I image features on load recognition was analyzed.Secondly,considering the complementarity between the features,the principal component analysis-back propagation(PCA-BP)neural network and convolutional neural network algorithms were used to deeply fuse numerical features and image features in high-dimensional space with different channels.Finally,the Softmax classification algorithm was applied to learn the advanced features and equipment labels in a supervised way,so as to realize the effective identification of different types of electrical equipment.The test results show that the load identification accuracy of this method is as high as 94.55%.The results fully demonstrate that the multi-feature fusion in high-dimensional space can reflect the essential attributes of the equipment in a more comprehensive and stereoscopic manner,which leads to a significant improvement in the accuracy of load identification.
作者 郇嘉嘉 汪超群 洪海峰 隋宇 余梦泽 潘险险 HUAN Jia-jia;WANG Chao-qun;HONG Hai-feng;SUI Yu;YU Meng-ze;PAN Xian-xian(Grid Planning&Research Center,Guangdong Power Grid Company,Guangzhou 510080,China;College of Electrical Engineering,Zhejiang University,Hangzhou 310007,China)
出处 《科学技术与工程》 北大核心 2021年第13期5360-5368,共9页 Science Technology and Engineering
基金 广东电网有限责任公司电网规划研究中心研究项目(GDKJXM20184328)。
关键词 非侵入式 负荷识别 双通道 特征融合 神经网络 non-intrusive load identification dual channel feature fusion neural network
  • 相关文献

参考文献10

二级参考文献95

共引文献738

同被引文献81

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部