期刊文献+

基于信息熵的加权块稀疏子空间聚类算法 被引量:7

Weighted Block Sparse Subspace Clustering Algorithm Based on Information Entropy
下载PDF
导出
摘要 稀疏子空间聚类(Sparse subspace clustering,SSC)算法在处理高光谱遥感影像时,地物的划分精度较低,为了提高地物划分精度,本文提出了一种基于信息熵的加权块稀疏子空间聚类算法(Weighted block sparse subspace clustering algorithm based on information entropy,EBSSC)。信息熵权重与块对角约束的引入,可以在仿真实验前获得两像素属于同一类别的先验概率,从而正向干预模型求解出的解趋于块对角结构的最优近似解,使模型获得对抗噪声和异常值的性能,从而提高模型分类的判别能力,以获得更好的地物划分精度。在3个经典高光谱遥感数据集上的实验结果表明,本文算法聚类高光谱影像的效果优于现有的几个经典流行的子空间聚类算法。 When the sparse subspace clustering algorithm processes hyperspectral remote sensing images,the classification accuracy of features is low.In order to improve the accuracy of feature classification,this paper proposes a weighted block sparse subspace clustering algorithm based on information entropy(EBSSC).The introduction of information entropy weight and block diagonal constraint can obtain the prior probability that two pixels belong to the same category before the simulation experiment,so that the solution solved by the positive intervention model becomes the optimal approximate solution of the block diagonal structure,making the model obtain the performance against noise and outliers,thereby improving the discriminative ability of model classification to obtain better classification accuracy of ground features.Experimental results on three classical hyperspectral remote sensing data sets show that the clustering effect of hyperspectral image in this paper is better than that of several existing classical and popular subspace clustering algorithms.
作者 龙咏红 邓秀勤 王卓薇 刘玉兰 LONG Yonghong;DENG Xiuqin;WANG Zhuowei;LIU Yulan(School of Applied Mathematics,Guangdong University of Technology,Guangzhou 510006,China;School of Computers,Guangdong University of Technology,Guangzhou 510006,China;State Key Laboratory for Novel Software Technology,Nanjing University,Nanjing 210093,China)
出处 《数据采集与处理》 CSCD 北大核心 2021年第3期544-555,共12页 Journal of Data Acquisition and Processing
基金 广东省基础与应用基础研究基金(2020A1515011409,2020A1515010408)资助项目 广东省信息物理融合系统重点实验室基金(2016B030301008)资助项目 南京大学计算机软件新技术国家重点实验室基金(KFKT2020B17)资助项目。
关键词 信息熵 稀疏子空间聚类 块稀疏子空间聚类 高光谱遥感影像 information entropy sparse subspace clustering weighted block sparse subspace clustering hyperspectral remote sensing images
  • 相关文献

参考文献3

二级参考文献117

  • 1Lee J S, Kuo Y M,Chung P C, et al. Naked image detectionbased on adaptive and extensible skin color mode [J]. PatternRecognition, 2007. 40(8) : 2261 - 2270.
  • 2Archibald R. Polynomial fitting for edge detection in irregularlysampled signals and images [J]. SIAM Journal on NumericalAnalysis. 2005,43(1):259 -279.
  • 3Chan T F, Vese L A. Active contours without edges [J]. IEEETrans, on Image Processing . 2001,10(2): 266 - 277.
  • 4Han Y. Feng X C,Baciu G. Variational and PCA based natural images^mentation [J], Pattern Recognition f 2013, 46(1) .1971 - 1984.
  • 5Han Y, Wang W W, Feng X C. A new fast multiphase imagesegmentation algorithm based on nonconvex regularizer [J].Pattern Recognition . 2012, 45(1) j 363 - 372.
  • 6Xiang T, Gong S. Spectral clustering with eigen vector selec-tion [J]. Pattern Recognition . 2008,41(3) : 1012 - 10^9.
  • 7Thilagamani S. A survey on image segmentation through clus-tering [J]. International Journal of Research and Reviews inInformation Sciences , 2011,1(1) : 14 - 17.
  • 8Elhamifar E, Vidal R. Sparse subspace clustering [C]//Proc.of the IEEE Con ference on Computer Vision and Pattern Rec-ognition ,2009:2790 - 2797.
  • 9Elhamifar E, Vidal R. Clustering disjoint subspaces via sparserepresentation [C] [/ Proc. of the IEEE International Conferenceon Acoustics. Speecht and Signal Processing > 2011:1926 - 1929.
  • 10Liu G, Lin Z, Yu Y. Robust subspace segmentation by low-rank representation [C] // Proc. of the International Confer-ence on Machine Learning . 2010:663 - 670.

共引文献88

同被引文献67

引证文献7

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部