摘要
机电系统的安全运行是医院生命支持系统管理的核心内容,准确预测医院后勤机电设备的运行风险,对机电系统的安全运营及整个医院的高质量发展具有重要意义。该文基于深度学习提出一种医院后勤机电设备智能风险管理方法。文中深入分析了影响机电设备运行风险的因素,并利用信息化技术构建全面的风险管理指标体系,设计了适用于实际风险预测及评价的风险管理模型结构和参数。最后对医院后勤机电设备智能风险管理领域存在的问题和发展趋势进行了探讨。
The safe operation of electromechanical systems is the core content of hospital life support system management,accurately predicting the operational risks of hospital logistics electromechanical equipment is of great significance to the safe operation of electromechanical systems and the high-quality development of the entire hospital.Therefore,this paper proposes an intelligent risk management method for hospital logistics electromechanical equipment based on deep learning.The article deeply analyzes the factors affecting the operational risks of electromechanical equipment,and uses information technology to build a comprehensive risk management index system,and designs the structure and parameters of a risk management model suitable for actual risk prediction and evaluation.Finally,the problems and development trends in the field of intelligent risk management of hospital logistics electromechanical equipment are discussed.
作者
祁鹏程
郭磊
沈崇德
QI Pengcheng;GUO Lei;SHEN Chongde(Department of General Affairs,Wuxi People's Hospital,Wuxi,Jiangsu Province,214023 China)
出处
《中国卫生产业》
2021年第8期55-57,91,共4页
China Health Industry
基金
江苏省医院协会医院管理创新研究课题(JSYGY-2-2019-315)。
关键词
医院后勤
机电设备
深度学习
智能风险管理
Hospital logistics
Electromechanical equipment
Deep learning
Intelligent risk management