期刊文献+

基于Poisson方程弱有限元方法的修正研究 被引量:1

A Modified Weak Galerkin Finite Element Method for Poisson Equation
下载PDF
导出
摘要 针对Poisson方程的弱有限元方法进行修正,其核心思想是在弱有限元的基础上,边界函数vb用内部函数v0的平均代替来减少该系统的未知量,进而提高计算速度。文章首先利用弱有限元方法离散函数u,然后对u的弱函数空间进行修正,并且建立了相关的误差方程,最后得到了函数u在H1范数和L2范数下的最优估计,这为Poisson方程的数值求解提供理论上的保证。 A modified weak Galerkin finite element method is researched for Poisson equation.This method,which is based on weak Galerkin finite element method,aims to replace the boundary functions vb with the average of the internal function v0.The result is that whole system has fewer degree of freedom,thus to speed calculation.This paper starts by dispersing the function u.Further,corresponding error equations are established and error estimates are analysed for numerical solution of Poisson problems.In conclusion,we obtain the optimal estimation of the function under the H1 norm and L2 norm,which provides more solid theoretical support for solving the Poisson equation.
作者 张秀锋 焦媛 Zhang Xiu-feng;Jiao Yuan(Department of Mathematics Changzhi University,Changzhi Shanxi 046011)
机构地区 长治学院数学系
出处 《长治学院学报》 2021年第2期9-16,共8页 Journal of Changzhi University
基金 山西省高等学校科技创新项目(2019L0903) 2020年长治学院校级课题(XJ2020001601)。
关键词 POISSON方程 修正弱有限元方法 弱梯度 Poisson equation modified weak Galerkin finite element methods weak gradient
  • 相关文献

参考文献2

二级参考文献24

  • 1Brenner S, Scott R. The Mathematical Theory of Finite Element Mathods. New York: Springer-Verlag, 1994.
  • 2Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978.
  • 3Wang J, Ye X. A weak Galerkin finite element method for second-order elliptic problems. J Comput Appl Math, 2013, 241: 103-115.
  • 4Wang J, Ye X. A weak Galerkin mixed finite element method for second-order elliptic problems. Math Comp, 2014, 83: 2101-2126.
  • 5Wang J, Ye X. A weak Galerkin finite element method for the Stokes equations. Adv Comput Math, in press, 2015.
  • 6Mu L, Wang J, Ye X, et al. A weak Galerkin finite element method for the Maxwell equations. J Sci Comput, doi: 10.1007/s10915-014-9964-4, 2014.
  • 7Mu L, Wang J, Ye X. Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numer Methods Partial Differential Equations, 2014, 30: 1003-1029.
  • 8Wang C, Wang J. An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes. Comput Math Appl, 2014, 68: 2314-2330.
  • 9Mu L, Wang J, Ye X. Weak Galerkin finite element methods on polytopal meshes. Int J Numer Anal Model, 2015, 12: 31-53.
  • 10Mu L, Wang J, Wang Y, et al. A computational study of the weak Galerkin method for second order elliptic quations. Numer Algorithms, 2013, 63: 753-777.

共引文献6

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部