期刊文献+

改进深度可分离卷积的SSD车型识别 被引量:6

Vehicle type recognition based on improved depthwise separable convolution SSD
下载PDF
导出
摘要 针对现有车辆识别方法对于车型实时识别能力不足的问题,提出一种改进的深度可分离卷积的SSD(single shot multibox detector)算法用于车型识别研究。首先,利用深度可分离卷积网络进行特征提取,并引入反残差模块来解决因通道数少、特征压缩导致的准确率下降问题。其次,以车辆的刚体特性为依据,重新设计区域候选框,减少模型参数运算量。最后,在BIT-Vehicle数据集上进行消融实验来对比不同网络模型性能差异。结果表明:改进的深度可分离卷积的SSD车型识别方法有更好的车型识别效果,可以达到96.12%的识别精度,检测速度提高至0.078 s/帧。 Aiming at the problem of insufficient real-time recognition capabilities of existing vehicle recognition methods,a single shot multibox detector(SSD)algorithm based on improved depthwise separable convolution is proposed for vehicle type recognition.Firstly,this paper proposes to extract the features using depthwise separable convolution network,and introduces the inverted residuals module to solve the problem of reduced accuracy due to the small number of channels and feature compression.Secondly,based on the rigid body characteristics of the vehicles,the region candidate frame is redesigned to reduce the amount of model parameter calculation.Finally,ablation experiments are performed on the BIT-Vehicle dataset to compare the performance differences of different network models.The results show that the improved depthwise separable convolution SSD vehicle type recognition method can achieve a recognition accuracy of 96.12%,and the detection speed increases to 0.078 s/frame.
作者 郭融 王芳 刘伟 GUO Rong;WANG Fang;LIU Wei(College of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030024,P.R.China)
出处 《重庆大学学报》 EI CAS CSCD 北大核心 2021年第6期43-48,83,共7页 Journal of Chongqing University
基金 山西省重点研发(高新领域)项目资助(201903D121132)。
关键词 车型识别 深度可分离卷积 反残差模块 区域候选框 卷积神经网络 vehicle type recognition depthwise separable convolution inverted residuals model regional candidate frame convolutional neural network
  • 相关文献

参考文献6

二级参考文献37

  • 1梁俊斌,徐建闽.基于感应线圈的骑线车辆检测方法[J].华南理工大学学报(自然科学版),2007,35(7):20-24. 被引量:10
  • 2Moscheni F, Bhattacharjee S, Kunt M. Spatio-tem- poral Segmentation Based on Region Merging[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1998, 20(9): 897-915.
  • 3Wixson L. Detecting Salient Motion by Accumula- ting Directionally-consistent Flow [J]. Pattern A- nalysis and Machine Intelligence, IEEE Transac- tions on, 2000, 22(8).. 774-780.
  • 4Elgammal A, Harwood D, Davis L. Non-paramet- ric Model for Background Subtraction[C]. Comput- er Vision--ECCV,Ireland, 2000.
  • 5Wu Jiapeng,Yang Zhaoxuan,Wu Jun, et al. Virtual Line Group Based Video Vehicle Detection Algo- rithm Utilizing Both Luminance and Chrominance [C]. ICIEA, Harbin, 2007.
  • 6Wu B F, Juang J H. Adaptive Vehicle Detector Ap- proach for Complex Environments [J]. Intelligent Transportation Systems, IEEE Transactions on,2012, 13(2):~ 817-827.
  • 7Zhu S, Gu M, Liu J. Moving Vehicle Detection and Tracking Algorithm in Traffic Video[J]. TELKOMNIKA Indonesian Journal of Electrical Engineering, 2013,11(6)..3 053-3 059.
  • 8Cao J ,Wang W, Liang Y. An Improved Detection Algorithm of Moving Vehicles Based on Computer Vision[C]~. Intelligent Computing and Intelligent System, Shanghai, 2009.
  • 9Wu C, Cao X, Lin R, et al. Registration-based Moving Vehicle Detection for Low-altitude Urban Traffic Surveillance[C]. Intelligent Control and Au- tomation(WCICA), Shanghai, 2010.
  • 10O~Malley R, Jones E,Glavin M. Rear-lamp Vvehi- cle Detection and Tracking in Low-exposure Color Video for Night Condition[J]. Intelligent Trans- portation Systems, IEEE Transactions on, 2010,11 (2) : 453-462.

共引文献137

同被引文献92

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部