期刊文献+

不同辅因子NADPH水平对谷氨酸棒杆菌生长及产物合成的影响 被引量:1

Different NADPH Levels Affected Growth and Metabolites Accumulation in Corynebacterium glutamicum
下载PDF
导出
摘要 由谷氨酸棒杆菌(Corynebacterium glutamicum)分泌的初级代谢产物赖氨酸,其合成与胞内NADPH水平密切相关,但目前对谷氨酸棒杆菌中赖氨酸的生物合成与辅因子NADPH之间调节机制的理解仍然有限。作者以赖氨酸高产菌C.glutamicum XQ-5为出发菌株,通过阻断磷酸戊糖途径构建了低NADPH水平的重组菌C.glutamicum XQ-5Δzwf::pgi,使胞内每1万个细胞的NADPH量从3.57×10^(-8)μmol降低至1.12×10^(-8)μmol。接着通过强化磷酸戊糖途径构建了高NADPH水平的工程菌C.glutamicum XQ-5Δpgi::(zwf-gnd),使胞内每1万个细胞的NADPH量从3.57×10^(-8)μmol提高至1.80×10^(-7)μmol。通过摇瓶发酵,不同NADPH水平下菌株的菌体生长情况、菌体量和胞内副产物积累明显不同。利用转录组学和其他实验,发现重组菌C.glutamicum XQ-5Δpgi::(zwf-gnd)中的panD基因表达水平明显提高。当panD基因被敲除后,重组菌C.glutamicum XQ-5ΔpanDΔpgi::(zwf-gnd)的赖氨酸质量浓度从41 g/L提高至55 g/L,比出发菌C.glutamicum XQ-5提高了14.3%。数据表明,通过过表达磷酸戊糖途径来提高NADPH水平导致赖氨酸水平下降的原因之一,是panD基因表达水平的提高。这为进一步探究辅因子NADPH对赖氨酸生物合成的调控机制提供了坚实基础。 Lysine,as a primary metabolite,is normally produced by Corynebacterium glutamicum,and its synthesis is closely related to intracellular NADPH levels.However,the regulatory mechanisms between L-lysine biosynthesis and the cofactor NADPH in C.glutamicum are still poorly understood.In this paper,the lysine-producing strain C.glutamicum XQ-5 was used as the starting strain,and the recombinant strain C.glutamicum XQ-5Δzwf::pgi with low NADPH levels was constructed by blocking the pentose phosphate pathway,reducing the intracellular NADPH level in each 104 cells from 3.57×10^(-8)μmol to 1.12×10^(-8)μmol.In addition,the recombinant strain C.glutamicum XQ-5Δpgi::(zwf-gnd)with high NADPH level was constructed by enhancing the pentose phosphate pathway.It increased the intracellular NADPH level in each 104 cells from 3.57×10^(-8)μmol to 1.8×10^(-7)μmol.Cell growth,bacterial mass and intracellular by-product accumulation of strains under different NADPH levels were significantly different through shake-flask fermentation.Based on the results of transcriptomics and other experiments,the expression level of the panD gene in the recombinant strain C.glutamicum XQ-5Δpgi::(zwf-gnd)was significantly increased.The lysine production of recombinant strain C.glutamicum XQ-5ΔpanDΔpgi::(zwf-gnd)with inactivated panD gene increased to 55 g/L,an increase of 14.3%to the original strain C.glutamicum XQ-5,which suggested that the increased expression level of panD gene was one of the reasons for the decline in lysine levels based on the over-expression of pentose phosphate pathway.This study provides a solid theoretical basis for further studies on the regulation mechanism of cofactor NADPH on L-lysine biosynthesis.
作者 王路平 徐建中 张伟国 WANG Luping;XU Jianzhong;ZHANG Weiguo(School of Biotechnology,Jiangnan University,Wuxi 214122,China;Key Laboratory of Industrial Biotechnology,Ministry of Education,Jiangnan University,Wuxi 214122,China)
出处 《食品与生物技术学报》 CAS CSCD 北大核心 2021年第4期44-57,共14页 Journal of Food Science and Biotechnology
基金 国家自然科学基金项目(31601459) 国家轻工业技术与工程一流学科计划项目(授权号LITE2018-07) 江苏省高等学校学术计划项目和江苏省科技支撑计划项目(BE2018316)。
关键词 谷氨酸棒杆菌 NADPH L-赖氨酸 天冬氨酸-α-脱羧酶 辅因子工程 Corynebacterium glutamicum NADPH L-lysine aspartate-α-decarboxylase cofactor engineering
  • 相关文献

参考文献1

二级参考文献49

  • 1侯进,沈煜,鲍晓明.酿酒酵母木糖代谢工程中辅酶工程的研究进展[J].中国生物工程杂志,2006,26(2):89-94. 被引量:10
  • 2王翠华,李友元,陈长华,李啸.温度对丙酮酸生物合成动力学、能荷和氧化-还原度的影响[J].生物工程学报,2006,22(2):316-321. 被引量:12
  • 3de Felipe FL, Kleerebezem M, de Vos WM, et al. Cofactor engineering: A novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J Bacteriol, 1998, 180(15): 3804-3808.
  • 4Hugenholtz J, Kleerebezem M. Metabolic engineering of lactic acid bacteria: Overview of the approaches and results of pathway rerouting involved in food fermentations Curr Opin Biotechnol, 1999, 10(5): 492-497.
  • 5San KY, Bennett GN, Berrios-Rivera S J, et al. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab Eng, 2002, 4(2): 182-192.
  • 6Berrios-Rivera SJ, Bennett GN, San KY. Metabolic engineering of Escherichia coli: Increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase. Metab Eng, 2002, 4(3): 217-229.
  • 7Saanchez AM, Bennett GN, San KY. Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium. J Biotechnol, 2005, 117(4): 395-405.
  • 8Bakker BM, Overkamp KM, van Maris AJA, et al. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev, 2001, 25(1): 15-37.
  • 9Liu LM, Li Y, Shi ZP, et al. Enhancement of pyruvate productivity in Torulopsis glabrata: Increase of NAD(+) availability. J Biotechnol, 2006, 126(2): 173-185.
  • 10Senior A. ATP synthesis by oxidative-phosphorylation. Physiol Rev, 1988, 68(1): 177-231.

共引文献24

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部