期刊文献+

Strain-Insensitive Hierarchically Structured Stretchable Microstrip Antennas for Robust Wireless Communication 被引量:2

下载PDF
导出
摘要 As the key component of wireless data transmission and powering,stretchable antennas play an indispensable role in flexible/stretchable electronics.However,they often suffer from frequency detuning upon mechanical deformations;thus,their applications are limited to wireless sensing with wireless transmission capabilities remaining elusive.Here,a hierarchically structured stretchable microstrip antenna with meshed patterns arranged in an arched shape showcases tunable resonance frequency upon deformations with improved overall stretchability.The almost unchanged resonance frequency during deformations enables robust on-body wireless communication and RF energy harvesting,whereas the rapid changing resonance frequency with deformations allows for wireless sensing.The proposed stretchable microstrip antenna was demonstrated to communicate wirelessly with a transmitter(input power of−3 dBm)efficiently(i.e.,the receiving power higher than−100 dBm over a distance of 100 m)on human bodies even upon 25%stretching.The flexibility in structural engineering combined with the coupled mechanical-electromagnetic simulations,provides a versatile engineering toolkit to design stretchable microstrip antennas and other potential wireless devices for stretchable electronics.
出处 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第8期1-12,共12页 纳微快报(英文版)
基金 This work was in part supported by the International Partnership Program of Chinese Academy of Science(Grant No.154232KYSB20200016) the Suzhou Science and Technology Support Project(Grant No.SYG201905) the National Key Research and Development Program of China(Grant No.2020YFC2007400) H.C.acknowledges the supports provided by the National Science Foundation(NSF)(Grant No.ECCS-1933072) the National Heart,Lung,And Blood Institute of the National Institutes of Health under Award Number R61HL154215,and Penn State University.The partial support from the Center for Biodevices,the College of Engineering,and the Center for Security Research and Education at Penn State is also acknowledged.
  • 相关文献

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部