期刊文献+

基于机器视觉的车道线识别方法 被引量:4

下载PDF
导出
摘要 在机器视觉车道线识别过程中,存在曲线识别率较低、误判等问题。为提高检测过程中的车道线检测精度,设计一种根据灰度变化设定ROI区域的计算方法,针对白天与夜间的行车区域与非行车区域分离。其次,对霍夫直线检测出的直线,增加对分割图像内HOG(Histogram of Oriented Gradient)特征提取后利用SVM(Support Vector Machines)分类检测的方法,为车道线检测提供后续的一种高拟合度的鲁棒性算法。试验结果表明,该方法能够有效地进行弯道和直道的识别。
出处 《科技与创新》 2021年第11期57-59,共3页 Science and Technology & Innovation
  • 相关文献

参考文献3

二级参考文献30

  • 1Mechat N, Saadia N, M ' Sirdi N K, et al. Lane detection and tracking by monocular vision system in road vehicle [C]//Proceedings of 2012 5th International Congress on Image and Signal Processing. Chongqing:IEEE,2012 : 1276 - 1282.
  • 2Watanabe A, Naito T, Ninomiya Y. Lane detection with roadside structure using on-board monocular camera [ C]//Proceedings of 2009 IEEE Intelligent Vehicles Sym- posium. Xi' an : IEEE ,2009 : 191 - 196.
  • 3Hur J, Kang S N, Seo S W. Muhi-lane detection in urban driving environments using conditional random fields [ C ]//Proceedings of 2013 IEEE Intelligent Vehicles Sym- posium. Gold Coast : IEEE,2013 : 1297 - 1302.
  • 4Aly M. Real time detection of lane markers in urban streets[ C]//Proceedings of 2008 IEEE Intelligent Vehi- cles Symposium. Eindhoven : IEEE ,2008:7 - 12.
  • 5Donoho D L, Huo Xiaoming. Beamlet pyramids: A new form of muhiresolution analysis suited for extracting lines, curves, and objects from very noisy image data [ C]//Proceedings of International Symposium on Optical Science and Technology. San Diego: SPIE, 2000 : 434 - 444.
  • 6Donoho D L,Huo Xiaoming. Beamlets and muhiscale im- age analysis, multiscale and multiresolution methods [ M ]//Computational Science and Engineering. New York :Springer,2002,20 : 149 - 196.
  • 7MacQueen J B. Some methods for classification and a- nalysis of multivariate observations [ C ]//Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley:University of California Press,1967: 281 - 297.
  • 8Ling Wei, He Miao. Concept lattice compression based on K-means [ C ://Proceedings of 2013 International Con- ference on Machine Learning and Cybernetics. Tianjin: IEEE,2013 ,2 :802 - 807.
  • 9Lee J W,Park R H,Chang S. Local tone mapping using the K-means algorithm and automatic gamma setting[J]. IEEE Transactions on Consumer Electronics, 2011, 57 (1) :209-217.
  • 10Xiao Jinsheng, Li Wenhao, Liu Guoxiong, et al. Hierarchi- cal tone mapping based on image color appearance model [ J]. IET Computer Vision,2014,8 (4) :358 - 364.

共引文献37

同被引文献25

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部