期刊文献+

cPCN-Regulated SnO_(2) Composites Enables Perovskite Solar Cell with Efficiency Beyond 23%

下载PDF
导出
摘要 Efficient electron transport layers(ETLs)not only play a crucial role in promoting carrier separation and electron extraction in perovskite solar cells(PSCs)but also significantly affect the process of nucleation and growth of the perovskite layer.Herein,crystalline polymeric carbon nitrides(cPCN)are introduced to regulate the electronic properties of SnO_(2) nanocrystals,resulting in cPCN-composited SnO_(2)(SnO_(2)-cPCN)ETLs with enhanced charge transport and perovs-kite layers with decreased grain boundaries.Firstly,SnO_(2)-cPCN ETLs show three times higher electron mobility than pristine SnO_(2) while offering better energy level alignment with the perovskite layer.The SnO_(2)-cPCN ETLs with decreased wettability endow the perovskite films with higher crystallinity by retarding the crystallization rate.In the end,the power conversion efficiency(PCE)of planar PSCs can be boosted to 23.17%with negligible hysteresis and a steady-state efficiency output of 21.98%,which is one of the highest PCEs for PSCs with modified SnO_(2) ETLs.SnO_(2)-cPCN based devices also showed higher stability than pristine SnO_(2),maintaining 88%of the initial PCE after 2000 h of storage in the ambient environment(with controlled RH of 30%±5%)without encapsulation.
出处 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第7期12-27,共16页 纳微快报(英文版)
基金 P.G.acknowledges the financial support from the National Natural Science Foundation of China(Grant No.21975260).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部