期刊文献+

单晶硅表面机械划痕和氧化层在湿法刻蚀中的掩膜行为对比研究 被引量:2

Comparative Study on the Mask Effect of Mechanical Scratch and Oxide Layer in Wet Etching on Monocrystalline Silicon Surface
下载PDF
导出
摘要 摩擦诱导选择性刻蚀具有加工成本低、流程简单、低加工损伤等优势,是实现单晶硅表面微纳米结构构筑的重要途径。为探究摩擦诱导机械划痕在单晶硅表面微纳加工中的掩膜行为,实验研究了选择性刻蚀中机械划痕掩膜下的线/面结构形貌与高度特征,并将其与氧化层掩膜进行对比。实验发现机械划痕掩膜性能与氧化层无明显差异,并讨论了两种不同掩膜下选择性刻蚀中纳米结构的形貌演变机理。最后,实现了采用不同掩膜的复合纳米图案加工。研究结果可为基于摩擦诱导选择性刻蚀的单晶硅表面高质量可控加工提供依据。 Friction-induced selective etching has advantages of low cost,simple operation,and low destruction,thus it is regarded as an important route to realize micro/nanofabrication on monocrystalline silicon surface.To investigate the mask effect of friction-induced mechanical scratch in micro/nanofabrication of silicon surface,the topography and height of line/area structures under mechanical scratch were studied in selective etching and compared with that under oxide layer.It was found that there was no significant difference in mask effect of mechanical scratch and oxide layer,and corresponding evolution mechanism of topography under two different masks was discussed.Finally,the fabrication of composite nano-patterns was achieved by combining mechanical scratch and oxide layer.The present study provides an important theoretical basis for the high-quality and controllable processing of silicon surface,which is based on friction-induced selective etching.
作者 陈鹏 高健 吴磊 郭剑 余丙军 CHEN Peng;GAO Jian;WU Lei;GUO Jian;YU Bingjun(Tribology Research Institute,School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,CHN;Dept.of Mechanical Engineering,University of South China,Hengyang 421001,CHN)
出处 《半导体光电》 CAS 北大核心 2021年第2期246-251,共6页 Semiconductor Optoelectronics
基金 国家自然科学基金项目(51775462) 湖南省自然科学基金项目(2019JJ50518)。
关键词 摩擦诱导选择性刻蚀 机械划痕 氧化层 掩膜 单晶硅 friction-induced selective etching mechanical scratches oxide layer anti-etching mask monocrystalline silicon
  • 相关文献

参考文献2

二级参考文献27

  • 1李霞章,陈杨,陈志刚,陈建清,倪超英.纳米CeO_2颗粒的制备及其化学机械抛光性能研究[J].摩擦学学报,2007,27(1):1-5. 被引量:29
  • 2CARR D W, SEKARIC L, CRAIGHEAD H a. Measurement of nanomechanical resonant structures in single-crystal silicon [J]. Journal of Vacuum Science gz Technology B, 1998, 16: 3821-3824.
  • 3EvoY S, CARR D W, SEKARIC L, et al. Nanofabrication and electrostatic operation of single- crystal silicon paddle oscillators [J]. Journal of Applied Physics, 1999, 86: 6072-6077.
  • 4CARR D W, EvoY S, SEKARIC L, et al. Measurement of mechanical resonance and losses in nanometer scale silicon wires [J]. Applied Physics Letters, 1999, 75: 920-922.
  • 5PEPIN A, YOUINOU P, STUDER V, et al. Nanoimprint lithography for the fabrication of DNA electrophoresis chips [J]. Microelectronic Engineering, 2002, 61(2): 927-932.
  • 6RESNICK D J, DAUKSHER W J, MANCINI D, et al. Imprint lithography for integrated circuit fabrication [J]. Journal of Vacuum Science & Technology B, 2003, 21(6): 2624-2631.
  • 7GARNETT E, YANG P D. Light trapping in silicon nanowire solar cells [J]. Nano Letters, 2010, 10: 1082-1087.
  • 8王国彪.纳米制造前言综述[M].北京:科学出版社,2009.
  • 9MIYAKE S, KIM J. Fabrication of silicon utilizing mechanochemical local oxidation by diamond tip sliding [J]. Japanese Journal of Applied Physics, 2001, 40(llB): 1247-1249.
  • 10MIYAKE S, KIM J. Nanoprocessing of silicon by mechanochemicM reaction using atomic force mi- croscopy and additional potassium hydroxide solution etching [J]. Nanotechnology, 2005, 16(1): 149-157.

同被引文献8

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部