期刊文献+

一种弥补群组成员差异的可解释性组推荐方法 被引量:1

Interpretable Group Recommendation Method to Make up for Differences Among Group Members
下载PDF
导出
摘要 现有的组推荐方法侧重于寻找组内成员之间的相似性,而忽略了成员之间存在的差异.在群组成员差异性显著的情况下,丢弃群组成员间的差异性,竭力寻求相似性,这样会大大降低群组成员对推荐结果的满意度.针对该问题,本文提出一种弥补群组成员差异的可解释性组推荐方法,通过群组成员差异度计算将群组分为差异性群组和相似性群组.对于相似性群组,采用基于决策权重的群组推荐方法生成推荐列表;对于差异性群组,本文构建了一种考虑成员信任值的群组LDA模型,基于此模型生成推荐列表和解释.实验结果表明,该推荐方法能根据群组成员差异性情况采用不同的推荐策略,提高群组推荐的满意度和推荐精度. The traditional group recommendation method focuses on finding the similarity between members in the group,while ignoring the differences between members.In the case of significant differences among group members,discard the differences among group members and strive to find similarity,which will greatly reduce the satisfaction of the group members with the recommendation results.In response to this problem,this paper proposes an interpretable group recommendation method to make up for the differences of group members.The group is divided into different groups and similar groups through the calculation of the difference of group members.For similar groups,a group recommendation method based on decision weights is used to generate the recommendation list;for differential groups,this paper builds a group LDA model that considers the trust value of members,and generates recommendation lists and interpretations based on this model.Experimental results show that this recommendation method can adopt different recommendation strategies according to the differences of group members,and improve the satisfaction and recommendation accuracy of group recommendations.
作者 吴彦文 宁彬 李斌 WU Yan-wen;NING Bin;LI Bin(School of Physical Science and Technology,Central China Normal University,Wuhan 430079,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2021年第5期905-911,共7页 Journal of Chinese Computer Systems
基金 国家自然科学基金重点项目(61937001)资助.
关键词 群组推荐 成员相似度 成员差异度 共识函数 可解性推荐 group recommendation member similarity member difference consensus function solvable recommendation
  • 相关文献

参考文献7

二级参考文献33

共引文献166

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部