期刊文献+

基于压缩感知的超分辨率重建研究综述 被引量:2

Review of super-resolution reconstruction based on compressed sensing
下载PDF
导出
摘要 为了克服终端设备硬件条件限制或传输过程中带宽限制而导致的获取图像和视频分辨率质量较低的问题,图像超分辨率技术作为计算机视觉领域中提升图像质量的重要技术,利用已知的低分辨率图像可恢复出高分辨率图像,现已广泛应用于卫星遥感、数字娱乐、视频监控等多个方面。围绕基于压缩感知理论的超分辨率方法,详细介绍将压缩感知应用于超分辨率的理论基础,列举几种典型的基于压缩感知的超分辨率方法,并在几种常用数据集上进行仿真对比。最后,对图像超分辨率的未来研究方向进行展望。 Due to the limitation of hardware or bandwidth in the process of transmission,the image and video resolution is usually of low quality.As an important technology to improve image quality in the computer vision,super-resolution can reconstruct high-resolution images from known low-resolution images,which has been widely used in satellite remote sensing,digital entertainment,video monitoring and other fields.The theory foundation of compressed sensing based super-resolution is discussed in detail.Some typical super-resolution methods based on compressed sensing are listed,and the experimental results are compared on several common data sets.Finally,the conclusion is drawn and the future research direction is prospected.
作者 李莹华 乔杨歌 刘颖 卢津 王富平 LI Yinghua;QIAO Yangge;LIU Ying;LU Jin;WANG Fuping(Key Laboratory of Electronic Information Application Technology for Crime Scene Investigation,Ministry of Public Security,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;Center for Image and Information Processing,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;International Joint Research Center for Wireless Communication and Information Processing Technology of Shaanxi Province,Xi'an University of Posts and Telecommunications,Xi'an 710121,China)
出处 《西安邮电大学学报》 2021年第2期87-95,共9页 Journal of Xi’an University of Posts and Telecommunications
关键词 压缩感知 超分辨率 字典学习 稀疏表示 自相似性 compressed sensing super-resolution dictionary learning self-similarity
  • 相关文献

参考文献3

二级参考文献129

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2禹晶,苏开娜,肖创柏.一种改善超分辨率图像重建中边缘质量的方法[J].自动化学报,2007,33(6):577-582. 被引量:22
  • 3Emmanuel J. Candès,Michael B. Wakin,Stephen P. Boyd.Enhancing Sparsity by Reweighted ? 1 Minimization[J]. Journal of Fourier Analysis and Applications . 2008 (5-6)
  • 4Richard Baraniuk,Mark Davenport,Ronald DeVore,Michael Wakin.A Simple Proof of the Restricted Isometry Property for Random Matrices[J]. Constructive Approximation . 2008 (3)
  • 5B. S. Kashin,V. N. Temlyakov.A remark on Compressed Sensing[J]. Mathematical Notes . 2007 (5-6)
  • 6Z B Xu,H Y Wang,X Y Chang.L1/2Regularizer. SciChina Ser F-Inf Sci . 2009
  • 7M Elad.Sparse and Redundant Representations:From Theoryto Applications in Signal and Image Processing. . 2010
  • 8R J Duffin,A C Schaeffer.A class of non-harmonic Fourierseries. Trans.AMS . 1952
  • 9M Elad,M Aharon.Image denoising via sparse and redundantrepresentations over learned dictionaries. IEEE Transac-tions on Image Processing . 2006
  • 10K Engan,K Skretting,J H Husoy.A family of iterative LS-based dictionary learning algorithms,ILS-DLA,for sparse sig-nal representation. Digital Signal Process . 2007

共引文献334

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部