摘要
为实现信号在空间的分集,关于格的空时分组码的设计近年来备受关注.通过研究与对角的格空时码相关的Z[ζm]上的一类二次不可约多项式的判别式|△|,确定了Z[ζm]上的格空时编码的正规分集乘积的大小.进而,利用Pell方程的解的性质,构造性地证明了m=5,8,10,12时,|△|的值可以任意小.最后,提出几个关于Z[ζm]上的二次不可约和三次不可约多项式的判别式大小的猜想.
To achieve the diversity of the signal in space,the design of the case of spacetime block codes has attracted much attention in recent years.By studying the discriminant of a class of quadratic irreducible polynomials over Z[ζm]related to lattice-based diagonal space-time block codes,the authors determine the size of the normalized diversity product for constructing the lattice space time code over Z[ζm] Furthermore,based on the property for solutions of the Pell equation,it is proved that the absolute value of the discriminant can be arbitrarily small when m=5,8,10,12.And then for the quadratic or cubic irreducible polynomials over Z[ζm],some problems to be further studied are proposed.
作者
杨仕椿
廖群英
YANG Shichun;LIAO Qunying(School of Mathematics,Aba Teachers University,Wenchuan 623002,Sichuan China;School of Mathematical Sciences,Sichuan Normal University,Chengdu 610066,China.)
出处
《数学年刊(A辑)》
CSCD
北大核心
2021年第2期149-158,共10页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.11861001,No.12071321)
四川省应用基础研究项目(No.2016JY0134,NO.2018JY0458)
四川省高校科研创新团队建设计划(No.18TD0047)的资助.
关键词
判别式
不可约多项式
PELL方程
对角格空时码
Determinant
Irreducible polynomial
Pell equation
Lattice-Based diagonal space-time block code