期刊文献+

二维材料曲面生长:力学与化学的邂逅

2D materials growth on curved surfaces—when mechanics meets chemistry
下载PDF
导出
摘要 理解二维材料在曲面上的生长形态和机制具有重要的理论和应用价值,但现有关于二维材料曲面生长的力学行为及形貌演化规律的研究极为缺乏。二维材料曲面生长会导致薄膜变形及其相关的应力/应变。这类应力可引发二维材料的滑移、屈曲、褶皱、断裂和离面运动等二次力学行为,并直接与生长反应耦合,进而改变材料的生长过程。与化学能和表面扩散主导的平面生长不同,曲面生长二维材料的形貌受曲面几何形状和材料力学行为的共同影响,会产生更为复杂多样的生长形貌。通过总结国际上相关研究进展,剖析了模拟曲面生长二维材料所面临的科学问题,并论述了如何结合原子模拟(如分子动力学和蒙特卡罗模拟)与唯象理论(如相场方法)开展多尺度计算研究,再辅以实验揭示二维材料曲面生长规律。 Understanding the growth mechanism of two-dimensional (2D) materials on curved surfaces is vital to both fundamental and applied study.However,very few reports have been found on describing mechanical behaviors and morphological evolution of 2D materials grown on curved surfaces.In fact,thegrowth of 2D materials on curved surfaces unavoidably incur structural deformations and lattice stress/strains.These will further cause intriguing mechanical phenomena such as slipping,buckling,wrinkling and cracking,which ultimately influence the growth kinetics of materials by coupling to chemical reactions at growth fronts.Different from the growth of 2D materials on a plane surface which is dominated by chemical energies and surface diffusions,the growth on curved surfaces is tied to surface geometries of substrates and mechanical properties of the materials,providing the room to form a rich variety of complex morphologies.By reviewing recent research progress in related fields,we analyze key challenges in simulating the growth of 2D materials on curved surfaces.We then suggest potential routes to addressing the challenges by performing a multiscale study through combining atomistic computations (i.e.molecular dynamics and Monte Carlo simulations) and phenomenological approaches (i.e.phase-field method),so as to reveal the growth mechanism of 2D materials on curved surfaces.
作者 胡知力 薛敏珉 赵志强 张助华 HU Zhi-li;XUE Min-min;ZHAO Zhi-qiang;ZHANG Zhu-hua(State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience,Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《计算力学学报》 CAS CSCD 北大核心 2021年第3期321-326,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(11772153,22073048,11802121) 江苏省自然科学基金(BK20180416)资助项目.
关键词 二维材料 曲面 生长 模拟 形貌 2D material curved surface growth simulation morphology
  • 相关文献

参考文献2

二级参考文献58

  • 1Silling S A. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209.
  • 2Kilic B. Peridynamic theory for progressive failure prediction in homogeneous and heterogeneous materials: [PhD Thesis]. Tucson: The University of Arizona, 2008.
  • 3Kilic B, Madenci E. Structural stability and failure analysis using peridynamic theory. International Journal of Non-linear Mechanics, 2009, 44(8): 845-854.
  • 4Macek R W, Silling S A. Peridynamics via finite element analysis. Finite Elements in Analysis and Design, 2007, 43(15): 1169-1178.
  • 5Silling S A, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers and Structures, 2005, 83(17-18): 1526-1535.
  • 6Weckner O, Abeyaratne R. The effect of long-range forces on the dynamics of a bar. Journal of the Mechanics and Physics of Solids, 2005, 53(3): 705-728.
  • 7Weckner O, Emmrich E. Numerical simulation of the dynamics of a non-local inhomogeneous, infinite bar. Journal of Computational and Applied Mechanics, 2005, 6(2): 311-319.
  • 8Askari E, Xu J, Silling S A. Peridynamic analysis of damage and failure in composites. In: 44th AIAA Aerospace Sciences Meeting and Exhibition, No. 2006-88, Reno, Nevada, 2006.
  • 9Silling S A. Peridynamic modeling of the failure of heterogeneous solids. Report on ARO Workshop on Analysis and Design of New Engineered Materials and Systems with Applications, Albuquerque, New Mexico, 2002.
  • 10Silling S A, Kahan S. Peridynamic modeling of structural damage and failure. In: Proceedings of Salishan Conference on High Speed Computing, Gleneden Beach, Oregon, 2004.

共引文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部