期刊文献+

基于软件定义的可重构卷积神经网络架构设计

Architecture design of re-configurable convolutional neural network on software definition
下载PDF
导出
摘要 为满足卷积神经网络业务处理的灵活性和高性能需求,提出一种基于软件定义的可重构卷积神经网络架构。该架构采用归一化处理流程实现卷积层网络的动态重构与运算模式的加速。采用AHB和AXI的双总线架构,实现卷积神经网络的流水计算。通过软件定义在FPGA上实现了不同网络结构下的数据集实时处理。实验结果表明,所设计的FPGA电路能够实现两种网络模型的软件定义,网络模型与输入数据集相同的条件下,该架构的运算处理能力为CPU的10倍,运算能耗比为GPU的2倍。 In order to meet the flexibility and efficiency requirement in convolutional neural network(CNN),an architecture of re-configurable CNN based on software definition was proposed.In the architecture,the process of CNN could be normalized and the operation mode could be accelerated.The calculation pipeline was implemented by using dual bus architecture based on AHB and AXI protocols.By software definition,the proposed architecture,which could realize the real-time processing of data among different CNN structure,was implemented on FPGA.The result shows that at least 2 CNN models can be software defined on the FPGA circuit.The output measures an operation processing capacity of 10 times that of CPU,and an operation energy consumption ratio of 2 times that of GPU.
作者 李沛杰 张丽 夏云飞 许立明 LI Peijie;ZHANG Li;XIA Yunfei;XU Liming(Information Engineering University,Zhengzhou 450001,China;Information Technology Innovation Center of Tianjin Binhai New Area,Tianjin 300457,China)
出处 《网络与信息安全学报》 2021年第3期29-36,共8页 Chinese Journal of Network and Information Security
基金 国家科技重大专项(2016ZX01012101)。
关键词 卷积神经网络 软件定义 动态可重构 FPGA 流水计算 SOC convolutional neural network software definition dynamic reconfiguration FPGA pipeline calculation SoC
  • 相关文献

参考文献7

二级参考文献20

  • 1Voiskunskii V G.Evaluation of Search Results:A New Approach[J].Journal of the American Society for Infomation Science,1997,48(2):133-142.
  • 2Raghavan V V,Bollman P,Jung G S.Retrieval System Evaluation Using recall and precision:Problems and Answers[C]//Proceedings of the Twelfth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Cambridge,UK:[s.n.],1989:59-68.
  • 3LeCun Y,Bottou L,Bengio Y,et al.Gradient-based learningapplied to document recognition[J].Proceedings ofthe IEEE,1998,86(11):2278-2324.
  • 4Simard P Y,Steinkraus D,Platt J C.Best practices forconvolutional neural networks applied to visual documentanalysis[C]//Proceedings of the 7th InternationalConference on Document Analysis and Recognition,2003:958-962.
  • 5Chellapilla K,Puri S,Simard P.High performance convolutionalneural networks for document processing[C]//10th International Workshop on Frontiers in HandwritingRecognition,2006.
  • 6Chellapilla K,Shilman M,Simard P.Optimally combininga cascade of classifiers[C]//Electronic Imaging,2006:207-214.
  • 7Garcia C,Delakis M.Convolutional face finder:a neuralarchitecture for fast and robust face detection[J].IEEETransactions on Pattern Analysis and Machine Intelligence,2004,26(11):1408-1423.
  • 8Frome A,Cheung G,Abdulkader A,et al.Large-scale privacyprotection in google street view[C]//IEEE InternationalConference on Computer Vision,2009:2373-2380.
  • 9Bouvrie J.Notes on convolutional neural networks[Z].2006.
  • 10Sankaradas M,Jakkula V,Cadambi S,et al.A massivelyparallel coprocessor for convolutional neural networks[C]//20th IEEE International Conference on Application-specificSystems,Architectures and Processors,2009:53-60.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部