期刊文献+

基于改进HED的多尺度边缘检测方法 被引量:2

Improved multi-scale edge detection method based on HED
下载PDF
导出
摘要 针对基于深度学习的多尺度边缘检测不可避免出现自适应性低,参数增加,计算量大,检测边缘不连续等问题,本文提出一种基于改进整体嵌套的多尺度边缘检测方法.该方法将多尺度检测与弱监督模型相结合,解决参数多计算量大的问题.为了充分利用卷积强大的特征表达能力,在整体嵌套边缘检测的基础上,提出了一种多尺度下深度学习结构,一个相互独立的多网络多尺度结构,由不同深度和输出的多个网络组合.同时引用整体嵌套的权重混合层,权重混合层将所有的弱监督预测结果连接到一起,并在训练的过程中学习混合权重。将所提方法在数据集BSDS500上通过评价指标进行性能评价.实验结果表明,所提方法能够在数据集BSDS500上达到很好的性能. Aiming at the problems of deep learning-based multi-scale edge detection inevitably low adaptability,increased parameters,large calculations,and discontinuous detection edges,this paper proposes a multi-scale edge detection method based on improved overall nesting.The method combines multi-scale detection with weak supervision model to solve the problem of large amount of parameter calculation.In order to make full use of the powerful feature expression ability of convolution,based on the whole nested edge detection,a multi-scale deep learning structure is proposed,which is an independent multi-network multi-scale structure,which is composed of multiple networks with different depths and outputs.At the same time,the whole nested weight mixing layer is referenced.The weight mixing layer connects all the weak supervised prediction results together and learns the mixed weight in the training process.The performance of the proposed method is evaluated by the evaluation index on the data set BSDS500.Experimental results show that the proposed method can achieve good performance on BSDS500.
作者 张晓闻 任勇峰 ZHANG Xiao-wen;REN Yong-feng(Science and Technology on Electronic Test&Measurement Laboratory,North University of China,Taiyuan 030051,Shanxi,China)
出处 《微电子学与计算机》 2021年第6期1-6,12,共7页 Microelectronics & Computer
基金 国家自然科学基金(61771434,61704160)。
关键词 边缘检测 多尺度 弱监督学习 整体嵌套边缘检测 Edge detection Multi-scale Weak supervised learning Holistically-Nested Edge Detection
  • 相关文献

参考文献1

二级参考文献2

共引文献105

同被引文献13

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部