摘要
针对同步定位与建图(Simultaneous Localization and Mapping,SLAM)系统经常因为相机抖动及场景结构单一等问题而导致跟踪失败的情况,以及重建三维地图的任务,提出了一种混合SLAM方法(R-ORB SLAM)。该方法采用一种基于光度误差的位姿粗略估计作为特征视觉里程计的先验,在ORB-SLAM2跟踪失败的情况下,使用该结果参与位姿估计。同时,在建图模块,对由每个关键帧点云拼接得到的全局点云地图使用VoxelGrid滤波器进行下采样,得到去除冗余点的稠密三维点云地图。通过对三维点云地图使用Poisson算法实现表面重建,得到三维地图模型。在两个流行的公开数据集上的实验结果表明,本文方法能有效解决跟踪失败问题,实现三维地图重建,具有较高的跟踪精度与重建精度。
Aiming at the tracking failure caused by camera jitter or low-texture environment in slam,this paper proposes a hybrid slam method R-ORB slam for depth camera to achieve the task of 3D map reconstruction.A rough pose estimation method based on photometric error is used as the prior of the feature-based odometer.Under the case that ORB-SLAM2 tracking fails,the result of the method is used to participate in the pose estimation.Meanwhile,for generating dense three-dimensional point map with non-redundant points,the VoxelGrid filter is used to down sample the global point cloud map obtained from each key frame point clouds mosaic.Then,by using Poisson algorithm to reconstruct the surface of 3D point cloud map,we can obtain the 3D map model.It is shown via the experiments on two popular open datasets that the proposed method can effectively solve the problem of tracking failure and realize 3D reconstruction with high tracking accuracy and reconstruction accuracy.
作者
李晨玥
张雪芹
曹涛
LI Chenyue;ZHANG Xueqin;CAO Tao(School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China;Shanghai Key Laboratory of Aerospace Intelligent Control Technology,Shanghai 201109,China;Shanghai Aerospace Control Technology Institute,Shanghai 201109,China)
出处
《华东理工大学学报(自然科学版)》
CAS
CSCD
北大核心
2021年第3期331-339,共9页
Journal of East China University of Science and Technology
基金
上海航空航天科技创新基金(SAST2018-086)。