摘要
已有的火灾检测方法往往依赖高性能的机器,在嵌入式端和移动端检测速度较慢、误检率较高,尤其是无法解决小尺度火焰漏检问题.针对上述问题,文中提出基于YOLO的火焰检测方法.使用深度可分离卷积改进火焰检测模型的网络结构,并使用多种数据增强技术与基于边框的损失函数以提高精度.通过参数调优,在保证检测准确率的情况下,实现在嵌入式移动系统上21 ms的实时火灾探测.实验表明,文中方法在火焰数据集上的精度和速度都有所提高.
The existing fire detection methods rely on high-performance machines,and therefore the speeds on the embedded terminals and the mobile ones are not satisfactory.For most of the detection methods,the speed is low and the false detection rate is high,especially for small-scale fires missed detection problems.To solve these problems,a fire detection method based on you only look once is proposed.Depthwise separable convolution is employed to improve its network structure.Multiple data augmentation and bounding box based loss function are utilized to achieve a higher accuracy.The real-time 21ms fire detection on embedded mobile system is realized through parameter tuning with the detection accuracy ensured.Experimental results show that the proposed method improves accuracy and speed on the fire dataset.
作者
李欣健
张大胜
孙利雷
徐勇
LI Xinjian;ZHANG Dasheng;SUN Lilei;XU Yong(School of Computer Science and Technology,Harbin Institute of Technology(Shenzhen),Shenzhen 518055;Shenzhen Key Laboratory of Visual Object Detection and Re-cognition,Harbin Institute of Technology(Shenzhen),Shen-zhen 518055;Liangjiang Artificial Intelligence Academy,Chongqing University of Technology,Chongqing 401135;College of Computer Science and Technology,Guizhou University,Guiyang 550025)
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2021年第5期415-422,共8页
Pattern Recognition and Artificial Intelligence
基金
深圳市科技计划项目(No.ZDSYS20190902093015527)资助。
关键词
火焰检测
目标检测
YOLO算法
数据增强
深度可分离卷积
Fire Detection
Object Detection
You Only Look Once(YOLO)Algorithm
Data Augmentation
Depthwise Separable Convolution