期刊文献+

复杂场景下基于CNN的轻量火焰检测方法 被引量:13

CNN-Based Lightweight Flame Detection Method in Complex Scenes
下载PDF
导出
摘要 已有的火灾检测方法往往依赖高性能的机器,在嵌入式端和移动端检测速度较慢、误检率较高,尤其是无法解决小尺度火焰漏检问题.针对上述问题,文中提出基于YOLO的火焰检测方法.使用深度可分离卷积改进火焰检测模型的网络结构,并使用多种数据增强技术与基于边框的损失函数以提高精度.通过参数调优,在保证检测准确率的情况下,实现在嵌入式移动系统上21 ms的实时火灾探测.实验表明,文中方法在火焰数据集上的精度和速度都有所提高. The existing fire detection methods rely on high-performance machines,and therefore the speeds on the embedded terminals and the mobile ones are not satisfactory.For most of the detection methods,the speed is low and the false detection rate is high,especially for small-scale fires missed detection problems.To solve these problems,a fire detection method based on you only look once is proposed.Depthwise separable convolution is employed to improve its network structure.Multiple data augmentation and bounding box based loss function are utilized to achieve a higher accuracy.The real-time 21ms fire detection on embedded mobile system is realized through parameter tuning with the detection accuracy ensured.Experimental results show that the proposed method improves accuracy and speed on the fire dataset.
作者 李欣健 张大胜 孙利雷 徐勇 LI Xinjian;ZHANG Dasheng;SUN Lilei;XU Yong(School of Computer Science and Technology,Harbin Institute of Technology(Shenzhen),Shenzhen 518055;Shenzhen Key Laboratory of Visual Object Detection and Re-cognition,Harbin Institute of Technology(Shenzhen),Shen-zhen 518055;Liangjiang Artificial Intelligence Academy,Chongqing University of Technology,Chongqing 401135;College of Computer Science and Technology,Guizhou University,Guiyang 550025)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2021年第5期415-422,共8页 Pattern Recognition and Artificial Intelligence
基金 深圳市科技计划项目(No.ZDSYS20190902093015527)资助。
关键词 火焰检测 目标检测 YOLO算法 数据增强 深度可分离卷积 Fire Detection Object Detection You Only Look Once(YOLO)Algorithm Data Augmentation Depthwise Separable Convolution
  • 相关文献

参考文献5

二级参考文献23

  • 1Celik T,Demirel H,Ozkaramanli H,et al.Fire detection using statistical color model in video sequences[J].Journal of Visual Communication and Image Representation,2007,18 (2):176-185.
  • 2Cho Bo-Ho,Bae Jong-Wook,Jung Sung-Hwan.Image processing-based fire detection system using statistic color model[C]//International Conference on Advanced Language Processing and Web Information Technology.New York:IEEE,2008:245-250.
  • 3Ugur T(o)reyin B.Fire detection algorithms using multimodal signal and image analysis[D].Ankara,Turkey:Bilkent University,2009.
  • 4Martin Mueller,Peter Karasev,Ivan Kolesov,et al.Optical flow estimation for flame detection in videos[J].IEEE Transaction on Image Processing,2013,22 (7):2786-97.
  • 5Yusuf Hakan Habibo(g)lu,Osman Günay,Enis(c)etin A.Covariance matrix-based fire and flame detection method in video[J].Machine Vision and Applications,2012,23 (6):1103-1113.
  • 6王文豪,刘尚勤,叶庆生.视频火灾检测的设计与实现[J].计算机工程与设计,2008,29(3):775-778. 被引量:8
  • 7张正荣,李国刚.基于支持向量机的火灾探测技术[J].微型机与应用,2010,29(24):70-72. 被引量:7
  • 8谢迪,童若锋,唐敏,冯阳.具有高区分度的视频火焰检测方法[J].浙江大学学报(工学版),2012,46(4):698-704. 被引量:9
  • 9李文辉,肖林厂,王莹,傅博,刘培勋.一种基于块的视频烟雾检测算法[J].吉林大学学报(理学版),2012,50(5):979-986. 被引量:10
  • 10唐岩岩,严云洋,刘以安.应用GMM的快速火焰检测[J].计算机科学,2012,39(11):283-285. 被引量:5

共引文献35

同被引文献92

引证文献13

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部