期刊文献+

磁场作用下倾斜方腔内纳米流体自然对流数值模拟 被引量:1

Numerical Simulation of Natural Convection of Nanofluids in an Inclined Square Cavity under the Effect of Magnetic Field
下载PDF
导出
摘要 采用Chebyshev配置点谱方法对倾斜方腔内纳米流体自然对流换热进行了数值模拟.倾斜方腔的左右壁面为恒温壁面,上下壁面为绝热壁面,并施加了与方腔下壁面平行的磁场.方腔内充满了以水为基液的不同纳米颗粒.研究方腔倾斜角度γ、Gr数和纳米颗粒对纳米流体流动与传热的影响.研究结果表明:传热在倾斜角度为π/4时最大,当方腔倾斜角度为π/3时传热受到抑制;纳米流体流动与传热受Gr数影响比较显著;不同纳米颗粒对传热影响趋势大致相同. The natural convetion of nanofluids in an inclined square cavity are numerically simulated by using Chebyshev collocation spectral methods.The left-hand and right-hand walls of the cavity were kept at a constant temperature,while the upper and lower walls were insulated.The magnetic field parallel to the lower wall of the inclined cavity is imposed.The cavity is filled with different nanoparticles,based on water.The effects of pertinent parameters such as the inclined angle of the square cavity,Grashof number and the solid nanoparticles on the fluid flow and heat transfer of nanofluids.The results show that the heat transfer of nanofluids is maximum when the inclined angle isπ/4,while the heat transfer of nanofluids is restrained when the inclined angle isπ/3.The fluid flow and heat transfer of nanofluids are a significant change with Grashof number.The influence of different nanoparticles on heat transfer is similar.
作者 齐美娜 罗小红 陈庆 QI Meina;LUO Xiaohong;CHEN Qing(School of Mechanical and Electrical Engineering,Jilin Institute of Chemical Technology,Jilin 132022,China)
出处 《吉林化工学院学报》 CAS 2021年第5期45-50,共6页 Journal of Jilin Institute of Chemical Technology
基金 吉林化工学院校级重大科研项目(2018033)。
关键词 纳米流体 倾斜方腔 磁场 自然对流 nanofluids inclined cavity magnetic field natural convection
  • 相关文献

参考文献4

二级参考文献27

  • 1Salah M. E1-Sayed, Asmaa M. A1-Dbiban, A new inversion free iteration for solving the equation x + A" X-~A = Q [ J ]. Com- putational and Applied Mathematices,2005 (181) :148-156.
  • 2Ivanov I G, Hasanov V I, Minchev B V, On matrix equationsX± A· X-2A = I [ J ]. Linear Algebra Appl,2001 (326) :27- 44.
  • 3T. Furuta, Operator inequalities associated with Holder-McCarthy and kanturovichin equalities [ J ]. J. Inequal. Appl. , 1998 (69) 137-148.
  • 4G.De Vahl Davis. Natural convection in a square cavity:a bench mark numerical solution[J].fluids,1983,(03):249-264.
  • 5G Barakos,E Mistoulis. Natural convection flow in a square cavity revisited:Laminar and turbulent models with wall functions[J].fluids,1994,(07):695-719.
  • 6S.Ostrach. Natural convection in enclosures[J].ASMEJournalof Heat Transfer,1988,(4B):1175-1190.
  • 7S.U.S.Choi. Enhancing thermal conductivity of fluids with nanoparticles[A].New York:ASME,1995.99-105.
  • 8K.Khanafer,K.Vafai,M.Lightstone. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids[J].International Journal of Heat and Mass Transfer,2003,(19):3639-3653.
  • 9R.Y.Jou,S.C.Tzeng. Numerical research of nature convective heat transfer enhancement filled with nanofluids Communications in Heat and Mass Transfer[J].2006,(06):727-736.
  • 10A.K.Santra,S.Sen,N.Chakraborty. Study of heat transfer augmentation in a differentially heated square cavity using copper-water nanofluid[J].International Journal of Thermal Sciences,2008,(08):1113-1122.

共引文献7

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部