期刊文献+

角对称区域上二维不可压理想流体方程的稳态解

Autonomous solutions of two dimension incompressible ideal fluidequations in angular symmetric domains
下载PDF
导出
摘要 从分离变量出发,在圆块、圆环、锥、扇形区域、半平面等角对称区域上找到一些不可压Euler和Boussinesq方程组的显式稳态解,从中可见Euler流的流场的双曲点可任意稠密.显式解一直是偏微分方程领域中比较重要的问题,可为探讨一些理论问题提供线索. Starting from separation of variables,explicit autonomous solutions for the 2D Euler and Boussinesq equations are obtained on angular symmetric planar domains including disks,annulus,cone,fan-shaped domains,the half-plane,etc.The hyperbolic points of Euler flows we obtained can be arbitrarily dense.Finding explicit solutions has always been important in PDE.Also,explicit solutions can provide insights in the investigations of various theoretical questions.
作者 陈志豪 邓大文 CHEN Zhihao;DENG Dawen(School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China)
出处 《湖北大学学报(自然科学版)》 CAS 2021年第4期403-412,共10页 Journal of Hubei University:Natural Science
关键词 不可压理想流体方程组 EULER方程 BOUSSINESQ方程 稳态解 角对称区域 equations of ideal incompressible fluid Euler equations Boussinesq equations autonomous solutions angular symmetric domains
  • 相关文献

参考文献3

二级参考文献6

  • 1A. J. Majda,A. L. Bertozzi.Vorticity and Incompressible Flow[]..2002
  • 2Wu,J.Z.,Ma,H.Y.,Zhou,M.D. Vorticity and Vortex Dynamics . 2006
  • 3Frewer,M.,Oberlack,M.,Guenther,S.Symmetry investigations on the incompressible stationary axisymmetric Euler equations with swirl[].Fluid DynRes.2007
  • 4Tong Binggang,,Yin Xieyuan,,Zhu Keqin.Theory of Vortex Motion[]..1994
  • 5Hannan M T,Carroll G R.Dynamics of Organizational Populations: Density, Legitimation, and Competition[]..1992
  • 6Batchelor GK.An introduction to fluid dynamics[]..1967

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部