期刊文献+

A level set based immersed boundary method for simulation of non-isothermal viscoelastic melt filling process 被引量:2

下载PDF
导出
摘要 In this work,the polymer melt filling process is simulated by using a coupled finite volume and levelset based immersed boundary(LSIB)method.Firstly,based on a shape level set(LS)function to represent the mold boundary,a LSIB method is developed to model the complex mold walls.Then the nonisothermal melt filling process is simulated based on nonNewtonian viscoelastic equations with different Reynolds numbers in a circular cavity with a solid core,and the effects of Reynolds number on the flow patterns of polymer melt are presented and compared with each other.And then for a true polymer melt with a small Reynolds number that varies with melt viscosity,the moving interface,the temperature distributions and the molecular deformation are shown and analyzed in detail.At last,as a commonly used application case,a socket cavity with seven inserts is investigated.The corresponding physical quantities,such as the melt velocity,molecular deformation,normal stresses,first normal stress difference,temperature distributions and frozen layer are analyzed and discussed.The results could provide some predictions and guidance for the polymer processing industry.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期119-133,共15页 中国化学工程学报(英文版)
  • 相关文献

二级参考文献35

  • 1Owens R G and Phillips T N 2002 Computational Rheology (London: Imperial College Press) p. 1.
  • 2Cleary P W and Monaghan J J 1999 J. Comput. Phys. 148 227.
  • 3Feng Z, Wang X D and Ouyang J 2013 Chin. Phys. B 22 074704.
  • 4Chert F Z, Qiang H F and Gao W R 2014 Aeta Phys. Sin. 63 130202 (in Chinese).
  • 5Gingold R A and Monaghan J J 1997 Mon. Not. R. Astron. Soc. 181 375.
  • 6Liu W K, Jun S and Zhang Y F 1995 Int. J. Numer. Method Fluids 20 1081.
  • 7Li S F and Liu W K 1999 Int. J. Numer. Method Eng. 45 251.
  • 8Li S F and Liu W K 1999 Int. J. Numer. MethodEng. 45 251).
  • 9Morris J P, Fox P J and Zhu Y 1997 J. Comput. Phys. 136 214.
  • 10Fang J, Parriaux A, Rentschler M and Ancey C 2009 Appl. Numer Math. 59 251.

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部