期刊文献+

跨模态行人再识别的协同学习方法

Collaborative Learning Method for Cross Modality Person Re-identification
下载PDF
导出
摘要 跨模态行人再识别是实现全天候智能视频监控系统的一项关键技术。该技术旨在匹配某一特定身份行人在不重叠摄像头场景下的可见光图像和红外图像,因而面临着巨大的类内变化和模态差异。现有方法难以较好地解决这两大困难,很大程度上是由于欠缺了对特征判别能力的有效挖掘和对多源异质信息的充分利用。鉴于以上不足,使用协同学习方法设计了一个精细化多源特征协同网络,提取多种互补性特征进行信息融合,以提升网络的学习能力。从骨干卷积网络中提取多尺度和多层次特征,实现精细化特征协同学习,以增强特征的判别能力来应对类内变化。设计了模态共有与特有特征协同模块和跨模态人体语义自监督模块,达到多源特征协同学习的目的,以提高多源异质图像信息的利用率,进而解决模态差异。在SYSU-MM01和RegDB数据集上验证了该方法的有效性和先进性。 Cross modality person re-identification is a key technology to realize 24-hour intelligent video surveillance sys-tem.This technology is designed to match the visible light image and infrared image of a person with a specific identity in a non-overlapping camera scene,so it faces huge intra-class changes and modality discrepancy.Existing methods are diffi-cult to solve these two major difficulties,which is largely due to the lack of effective mining of feature discrimination and full utilization of multi-source heterogeneous information.In view of the above shortcomings,this paper uses collabora-tive learning method to design a refined multi-source feature collaborative network,which extracts multiple complementary features for information fusion to enhance the learning ability of the network.Multi-scale and multi-level features are extracted from the backbone convolutional network to realize the collaborative learning of refined features to enhance the discrimination ability of features to deal with intra-class changes.In addition,a modality shared and specific feature col-laborative learning module and a cross-modal human semantic self-supervised module are designed to achieve the pur-pose of multi-source feature collaborative learning,to improve the utilization of multi-source heterogeneous image infor-mation,and to resolve modality discrepancy.The effectiveness and advancement of this method have been verified on the SYSU-MM01 and RegDB datasets.
作者 陈坤峰 潘志松 王家宝 施蕾 张锦 焦珊珊 CHEN Kunfeng;PAN Zhisong;WANG Jiabao;SHI Lei;ZHANG Jin;JIAO Shanshan(College of Command and Control Engineering,Army Engineering University of PLA,Nanjing 210007,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第12期115-125,共11页 Computer Engineering and Applications
基金 国家自然科学基金(62076251)。
关键词 行人再识别 跨模态 协同学习 精细化特征 多源特征 信息融合 person re-identification cross modality collaborative learning refined features multi-source features infor-mation fusion
  • 相关文献

参考文献3

二级参考文献106

  • 1彭彰,吴晓娟,杨军.基于肢体长度参数的多视角步态识别算法[J].自动化学报,2007,33(2):210-213. 被引量:10
  • 2Little J,Boyd J E.Recognizing People by Their Gait:The Shape of Motion.Videre:Journal of Computer Vision Research,1998,1(2):1-32.
  • 3Tanawongsuwan R,Bobick A.Performance Analysis of TimeDistance Gait Parameters under Different Speeds//Proc of the4th International Conference on Audio-and Video-Based Biometric Person Authentication.Guildford,UK,2003:715-724.
  • 4Cuntoor N,Kale A,Chellappa R.Combining Multiple Evidences for Gait Recognition//Proc of the International Conference on Acoustics,Speech and Signal Processing.Hong Kong,China,2003,III:33-36.
  • 5Chalidabhongse T,Kruger V,Chellappa R.The UMD Database for Human Identification at a Distance.Technical Report.College Park,USA:University of Maryland,2001.
  • 6Gross R,Shi J.The CMU Motion of Body(MoBo)Database.Technical Report,CMU-RI-TR-01-18.Pittsburgh,USA:Carnegie Mellon University,2001.
  • 7Nixon M,Carter J,Shutler J,et al.Experimental Plan for Automatic Gait Recognition.Technical Report.Southampton,UK:University of Southampton,2001.
  • 8Sarkar S.The Human ID Gait Challenge Problem:Data Sets,Performance and Analysis.IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(2):162-177.
  • 9Wang Liang,Tan Tieniu.Silhouette Analysis-Based Gait Recognition for Human Identification.IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(12):1505-1518.
  • 10Yu Shiqi,Tan Daoliang,Tan Tieniu.A Framework for Evaluating the Effect of View Angle,Clothing and Carrying Condition on Gait Recognition//Proc of the18th International Conference on Pattern Recognition.Hong Kong,China,2006:441-444.

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部