摘要
重大突发事件发生后,以微博为主的新媒体平台已成为网民获取相关信息和交流的主要渠道。对重大突发事件微博舆情演化进行分析,能够为政府舆情应对提供参考。采用Python第三方库jieba进行分词,基于TF-IDF进行热点提取,采用SnowNLP进行情感分析,从而对舆情演化趋势、情感演化及热点等进行分析,将微博舆情演化划分为五个阶段。以“天津大爆炸事故”为例,分析不同阶段下的微博舆情热点及网民情感,提出相应的政府应对建议。
After the occurrence of serious emergencies,new media platform,dominated by Weibo,has become the main channel for netizens to obtain relevant information and exchange information.The analysis of Weibo public opinion evolution of serious emergencies can provide reference for government response about public opinion.In this paper,the Python third-party library jieba is used for word segmentation,TF-IDF is used for hot spot extraction,SnowNLP is used for sentiment analysis,so as to analyze the evolution trend,sentiment evolution and hot spot of public opinion,and divide the evolution of microblog public opinion into five stages.Taking“Tianjin Big Explosion Accident”as an example,this paper analyzed hot spot of Weibo public opinion and netizens’sentiments at different stages,and put forward corresponding government response suggestions.
作者
冯兰萍
严雪
程铁军
FENG Lanping;YAN Xue;CHENG Tiejun(Business School,Hohai University,Changzhou 213022,China;School of Economics,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处
《竞争情报》
2021年第3期21-29,共9页
Competitive Intelligence
基金
国家社科基金青年项目“多元舆论场共存背景下重大突发事件舆情博弈和引导策略研究”(17CXW012)的研究成果之一。
关键词
重大突发事件
微博舆情
情感演化
热点提取
政府应对
serious emergencies
Weibo public opinion
sentiment evolution
hot spot extraction
government response