期刊文献+

Analysis of Protein-Ligand Interactions of SARS-CoV-2 Against Selective Drug Using Deep Neural Networks 被引量:1

原文传递
导出
摘要 In recent time, data analysis using machine learning accelerates optimized solutions on clinical healthcare systems. The machine learning methods greatly offer an efficient prediction ability in diagnosis system alternative with the clinicians. Most of the systems operate on the extracted features from the patients and most of the predicted cases are accurate. However, in recent time, the prevalence of COVID-19 has emerged the global healthcare industry to find a new drug that suppresses the pandemic outbreak. In this paper, we design a Deep Neural Network(DNN)model that accurately finds the protein-ligand interactions with the drug used. The DNN senses the response of protein-ligand interactions for a specific drug and identifies which drug makes the interaction that combats effectively the virus. With limited genome sequence of Indian patients submitted to the GISAID database, we find that the DNN system is effective in identifying the protein-ligand interactions for a specific drug.
出处 《Big Data Mining and Analytics》 EI 2021年第2期76-83,共8页 大数据挖掘与分析(英文)
  • 相关文献

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部