摘要
图G的点荫度a(G)是用来染G的顶点集合的最少颜色数使得不产生单色圈.列表点荫度al(G)是这个概念在列表染色意义下的推广.本文证明了:若G是一个直径为2的可平面图,则al(G) ≤2.
The vertex arboricity a(G) of a graph G is the minimum number of colors required to color the vertices of G such that no cycle is monochromatic.The list vertex arboricity al(G) is the list version of this concept.In this paper,we prove that if G is a planar graph of diameter at most two,then al(G) ≤2.
作者
杨燕平
王艺桥
王平
王维凡
YANG Yanping;WANG Yiqiao;WANG Ping;WANG Weifan(Department of Mathematics,Zhejiang Normal University,Jinhua,Zhejiang,321004,P.R.China;School of Management,Beijing University of Chinese Medicine,Beijing,100029,P.R.China;Department of Mathematics and Statistics,St.Francis Xavier University,Antigonish,NS B2G 2W5,Canada)
出处
《数学进展》
CSCD
北大核心
2021年第3期335-344,共10页
Advances in Mathematics(China)
基金
Supported by NSFC(Nos.12071048,11771402,12031018).
关键词
可平面图
直径为2
列表点荫度
列表森林染色
planar graph
diameter two
list vertex arboricity
list-forested-coloring