期刊文献+

Banach代数中上三角矩阵的广义Drazin谱

Generalized Drazin Spectrum of Upper Triangular Matrices in Banach Algebras
原文传递
导出
摘要 设A是含单位元e的Banach代数,a,b,c∈A,M_(c)=(a c o b)∈M_(2)(A).本文提出了 Banach代数中元素的左、右广义Drazin可逆的概念.定义集合σgD(a)={λ∈C:a - λe不是广义Drazin可逆的}为元素a的广义Drazin谱.证明了σgD(a)∪σgD(a)=σgD(M_(c))∪W_(g),其中 W_(g) 是σgD (M_(c))的某些洞且W_(g)■σgD(a)∩σgD(b),或者更精细地W_(g)■σrgD(a)∩σlgD(b).此外,还研究了 Banach代数中元素的广义Drazin谱的其他性质. Let A be a Banach algebra with unit e and a,b,c∈A,M_(c)=(a c o b)∈M_(2)(A).The concepts of left and right generalized Drazin invertible of elements in a Banach algebra are proposed.A generalized Drazin spectrum of a is defined by σgD(a)={λ∈C:a-λe is not generalized Drazin invertible}.It is shown thatσgD(a)∪σgD(b)=σgD(Mc)∪W_(g),where W_(g) is a union of certain holes in σgD(M_(c)) and W_(g)■σgD(a)∩σgD(b),or more finely W_(g)■σrgD(a)∩σlgD(b).In addition,some properties of generalized Drazin spectrum of elements in a Banach algebra are studied.
作者 庞永锋 马栋 张丹莉 PANG Yongfeng;MA Dong;ZHANG Danli(Department of Mathematics,School of Science,Xi'an University of Architecture and Technology,Xi’an,Shaanxi,710055,P.R.China)
出处 《数学进展》 CSCD 北大核心 2021年第3期429-436,共8页 Advances in Mathematics(China)
基金 国家自然科学基金(No.11401757) 陕西省自然科学基金(No.2019JM252) 西安建筑科技大学基础研究基金(No.JC0621)。
关键词 BANACH代数 广义Drazin逆 广义Drazin谱 上三角矩阵 Banach algebra generalized Drazin inverse generalized Drazin spectrum upper triangular matrices
  • 相关文献

参考文献4

二级参考文献40

  • 1Xiao Hong CAO,Mao Zheng GUO,Bin MENG.Semi-Fredholm Spectrum and Weyl's Theorem for Operator Matrices[J].Acta Mathematica Sinica,English Series,2006,22(1):169-178. 被引量:37
  • 2Wei Y, Qiao S. The representation and approximation of the Drazin inverse if a linear operator in Hilbert space. Appl Math Comp, 2003, 138(1): 77-89
  • 3Du H K, Deng C Y. The representation and characterization of Drazin inverses of operators on a Hilbert space. Linear Algebra Appl, 2005, 407(1): 117-124
  • 4Barraa M, Boumazgour M. A note on the spectra of upper triangular operator matrix. Proc Amer Math Soc, 2003, 131(10): 3083-3088
  • 5Cao X H, Meng B. Essential appoximate point spectra and Weyl's theorem for operator matrices. J Math Anal Appl, 2005, 304(2): 759-771
  • 6Cao X H, et al. Weyl's theorem for upper triangular operator matrices. Linear Algebra Appl, 2005, 420(1): 61-73
  • 7Djordjevid D S. Perturbations spectra of operator matrices. J Operator Theroy, 2002, 48(2): 467-486
  • 8Djordjevic D S, Stanimirovic P S. On the generalized Drazin inverse and generalized resolvent. Czechoslovak Math J, 2001, 126(5): 617-634
  • 9Du H K, Pan J. Perturbation of spectrums of 2 x 2 operator matrices. Proc Amer Math Soc, 1994, 121(3): 761-776
  • 10Han J K, et al. Invertible completions of 2 × 2 operator matrices. Proc Amer Math Soc, 1999, 128(1): 119-123

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部