期刊文献+

基于动态路面特征的并联式混合动力汽车驱动力控制策略研究

Study on Traction Control Strategy for Parallel Hybrid Electric Vehicles Based on Dynamic Road Characteristics
下载PDF
导出
摘要 为了提高并联式混合动力汽车加速时的动力性与稳定性,提出了一种基于电机力矩动态调节的动态牵引力控制策略,所建立的控制策略基于路面最优滑转率的实时估计,通过电机力矩的动态调节来控制驱动轮的动态牵引力以提高加速性能并抑制过度滑转,对动态牵引力控制与能量管理的算法融合问题进行了研究,以避免动态牵引力控制对能量管理策略的干扰。最后,在MATLAB/Simulink环境中进行了系统仿真验证,结果表明所提出的控制策略显著地改善了车辆的加速性与行驶稳定性,同时还可以实现能量回收,可以有效提高了系统的节能效果。 In order to improve the power performance and stability of parallel hybrid electric vehicle when accelerating,a dynamic traction control strategy based on dynamically adjusting the motor torque was proposed along with its system simulation.The presented strategy is established on the optimal slip ratio real time estimation,while the dynamic traction of driving wheel is controlled by adjusting the motor torque to improve the accelerating ability and preventing the excessive slip of driving wheel.In addition,the algorithm fusion between dynamic traction control strategy and energy management strategy is researched to avoid interference with energy management strategy.Finally system simulation was carried out in the environment of MATLAB/Simulink,and the results indicate that the proposed control strategy can observably improve the vehicle accelerating ability and driving stability,meanwhile,it can realize energy recycle and improve the energy-saving effect to some extent.
作者 张亮 赵珂倩 ZHANG Liang;ZHAO Ke-qian(Shenyang Ligong University,Shenyang 110000,China;Shanghai GM(Shenyang)Norsom Motors Company Ltd.,Shenyang 110000,China)
出处 《内燃机与配件》 2021年第12期5-7,共3页 Internal Combustion Engine & Parts
关键词 混合动力汽车 动态牵引力控制 路面识别 系统仿真 hybrid electric vehicles dynamic traction control road surface identification system simulation
  • 相关文献

参考文献2

二级参考文献20

  • 1VAN ZANTEN A T, ERHARDTR, PFAFF G , et al. Control aspects of the Bosch-VDC[C]//AVEC’96, International Symposium on Advanced Vehicle Control, Aachen, June 24 - 28, 1996:574-607.
  • 2TANELLI M, PIRODDI L, SAVARESI S M. Real-time identification of tire-road friction conditions[J]. The Institution of Engineering and Technology Control Theory Appl., 2009, 3(7):891-906.
  • 3PAJAMANI R, PIYABONGKARN N, YI K, et al. Tire-road friction-coefficient estimation[J]. IEEE Control Systems Magazine, 2010, 30(4):4-69.
  • 4ERDOGAN G, ALEXANDER L, RAJAMANI R. Estimation of tire-road friction coefficient using a novel wireless piezoelectric tire sensor[J]. IEEE Sensors Journal, 2011, 11(2):267-279.
  • 5FANG Yong, CHU Liang, SUN Wanfeng, et al. Identification and control of split-μ road for antilock braking system[C]//ICACC, International Conference on Advanced Computer Control, Shenyang, March 27-29, 2010:298-301.
  • 6KICKERT W J M, MAMDANI E H. Analysis of a fuzzy logic controller[J]. Fuzzy Sets and Systems, 1978, 1(1):29-44.
  • 7LI Liang, SONG Jian, LI Hongzhi, et al. Comprehensive prediction method of road friction for vehicle dynamics control[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2009, 223(8):987-1002.
  • 8SHI J, LI X, LU T, et al. Development of a new traction control system for vehicles with automatic transmissions [ J ]. International Journal of Automotive Technology, 2012, 13 (5) : 743-750.
  • 9DEUR J, PAVKOVIC D, BURGIO G, et al. A model-basedtraction control strategy non-reliant on wheel slip information [ J ]. Vehicle System Dynamics, 2011, 49 ( 8 ) : 1245-1265.
  • 10LI H Z, LI L, HE J, et al. PID plus fuzzy logic method for torque control in traction control system [ J ]. International Journal of Automotive Technology, 2012, 13(3) : 441-450.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部