摘要
随机集值隐拟变分不等式是变分不等式与不动点领域的一个重要分支,其被广泛的应用于博弈论、经济金融管理、物流管理等领域.研究了Hilbert空间中的一类新随机集值隐拟变分不等式问题。利用投影算子技巧、Nadler不动点定理以及不动点的随机化原理,给出了该类随机集值隐拟变分不等式解的存在性结果.所得结果,丰富了随机环境下随机变分不等式问题的可解性结果,包含的前人已有结果为特例.
This paper introduces and studies a new stochastic set-valued implicit quasi-variational inequality in a Hilbert space. By employing the technique of projection operator, the Nadler fixed point theorem and the randomization principle of fixed points, an existence of solutions was obtained for the new stochastic set-valued implicit quasi-variational inequality under mild conditions. The main result presented in this paper generalized some known results in the literature.
作者
周武
宋建成
ZHOU Wu;SDNG Jian-cheng(School of Mathematics,Southwest Minzu University,Chengdu 610041,China)
出处
《西南民族大学学报(自然科学版)》
CAS
2021年第3期330-334,共5页
Journal of Southwest Minzu University(Natural Science Edition)
基金
国家自然科学基金青年项目(11701479)。
关键词
随机集值隐拟变分不等式
投影算子
Nadler不动点定理
不动点的随机化原理
解的存在性
stochastic set-valued implicit quasi-variational inequality
projection operator
Nadler’s fixed point theorem
randomization principle of fixed points
existence of solution