期刊文献+

基于改进YOLOv3的人体行为检测 被引量:1

Human Behavior Detection Based on Improved YOLOv3
下载PDF
导出
摘要 针对人体行为检测中相同行为差异大,不同行为相似度高,以及视觉角度、遮挡、不能实时检测等问题,提出Hierarchical Bilinear-YOLOv3人体行为检测网络.该网络采用YOLOv3在3个不同尺度上进行预测,抽取YOLOv3金字塔特征提取网络中特定层作为Hierarchical Bilinear的输入,捕获特征图的层间局部特征关系,并在3个不同尺度上进行预测,最后将YOLOv3和Hierarchical Bilinear两种预测结果融合.实验结果显示,改进后的模型相比于原网络仅增加了少量参数,在保证检测效率的同时提高原算法的检测精度,并在一定程度上优于当前行为检测算法. This study proposes a neural network named Hierarchical Bilinear-YOLOv3 for human behavior detection due to a large disparity in the same behavior and high resemblance between different behaviors in human behavior detection,as well as problems such as visual angle,occlusion,and incapability of continuous real-time monitoring.YOLOv3 is first designed for prediction on three scales,and certain layers in its feature pyramid networks are used as inputs for Hierarchical Bilinear to capture local feature relationships between layers in the feature maps and predict the results on three scales.The integrated results of both YOLOv3 and Hierarchical Bilinear show that the improved network only adds a few parameters compared to the original one.It improves the detection accuracy of the original algorithm without lowering the detection efficiency and thus is superior to the current behavior detection algorithms.
作者 李啸天 黄进 李剑波 杨旭 秦泽宇 付国栋 LI Xiao-Tian;HUANG Jin;LI Jian-Bo;YANG Xu;QIN Ze-Yu;FU Guo-Dong(School of Electrical Engineering,Southwest Jiaotong University,Chengdu 611756,China;School of Information Science and Technology,Southwest Jiaotong University,Chengdu 611756,China)
出处 《计算机系统应用》 2021年第6期197-202,共6页 Computer Systems & Applications
基金 成都市科学技术局项目(2018-YF05-01424-GX)。
关键词 人体行为检测 YOLOv3算法 Hierarchical Bilinear-YOLOv3网络 特征提取 human behavior detection YOLOv3 algorithm Hierarchical Bilinear-YOLOv3 network feature extraction
  • 相关文献

参考文献4

二级参考文献63

  • 1Fujiyoshi H, Lipton A J, Kanade T. Real-time human mo- tion analysis by image skeletonization. IEICE Transactions on Information and Systems, 2004, 87-D(1): 113-120.
  • 2Chaudhry R, Ravichandran A, Hager G, Vidal R. His- tograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of hu- man actions. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1932-1939.
  • 3Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Con- ference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005. 886-893.
  • 4Lowe D G. Object recognition from local scale-invariant fea- tures. In: Proceedings of the 7th IEEE International Confer- ence on Computer Vision. Kerkyra: IEEE, 1999. 1150-1157.
  • 5Schuldt C, Laptev I, Caputo B. Recognizing human actions: a local SVM approach. In: Proceedings of the 17th In- ternational Conference on Pattern Recognition. Cambridge: IEEE, 2004. 32-36.
  • 6Dollar P, Rabaud V, Cottrell G, Belongie S. Behavior recog- nition via sparse spatio-temporal features. In: Proceedings of the 2005 IEEE International Workshop on Visual Surveil- lance and Performance Evaluation of Tracking and Surveil- lance. Beijing, China: IEEE, 2005.65-72.
  • 7Rapantzikos K, Avrithis Y, Kollias S. Dense saliency-based spatiotemporal feature points for action recognition. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1454-1461.
  • 8Knopp J, Prasad M, Willems G, Timofte R, Van Gool L. Hough transform and 3D SURF for robust three dimensional classification. In: Proceedings of the llth European Confer- ence on Computer Vision (ECCV 2010). Berlin Heidelberg: Springer. 2010. 589-602.
  • 9Klaser A, Marszaeek M, Schmid C. A spatio-temporal de- scriptor based on 3D-gradients. In: Proceedings of the 19th British Machine Vision Conference. Leeds: BMVA Press, 2008. 99.1-99.10.
  • 10Wang H, Ullah M M, Klaser A, Laptev I, Schmid C. Evalua- tion of local spatio-temporal features for action recognition. In: Proceedings of the 2009 British Machine Vision Confer- ence. London, UK: BMVA Press, 2009. 124.1-124.11.

共引文献176

同被引文献14

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部