期刊文献+

应用于空分纯化系统的相变储热器建模及分析

Modeling and analysis of latent heat storage unit used in air separation purification system
下载PDF
导出
摘要 为实现空分纯化系统污氮气余热的回收再利用,设计了一种采用相变储热器的新型空分纯化系统,同时提出了相应的相变储热器设计方法。首先,对空分纯化系统进行数据采集,并通过回归获得污氮气温度、流量等参数的特性函数。随后,建立了非稳态变温热源下的相变储热器动态数学模型,并推导相变材料在污氮气特性函数作用下的温度通用表达式。其次,以储、放热整体循环的最大放热量为目标函数,采用微分进化算法优化储热器内相变材料熔化温度、质量等关键参数。最后,通过穷举计算了单、双级相变储热器中相变温度与余热利用率之间的关系。计算结果表明,对于单级相变储热器,最佳的相变温度为59.67℃,最大余热利用率约为0.41;对于双级相变储热器,第一级和第二级的最佳相变温度分别为73.68℃和46.04℃,最大余热利用率约为0.52。本研究为提升空分纯化系统能效奠定了理论基础。 In order to achieve recovery and reuse of waste heat in air separation purification system,a novel type of air separation purification system using latent heat storage unit was designed,and the corresponding design method for the latent heat storage unit was proposed.First of all,data collection was performed on the air separation purification system,and the characteristic functions of pollutant nitrogen parameters such as the temperature and flow rate were obtained by regression.Then,a dynamic mathematical model of the latent heat storage under the unsteady-state pollutant nitrogen heat source was established,and the general temperature expression of the phase change materials was derived.Subsequently,taking the maximum heat release capacity of latent heat storage unit in the whole cycle as the objective function,the differential evolution algorithm was used to optimize the key parameters such as the melting temperature and quality of phase change materials.At last,the relationship between the melting temperature and the waste heat utilization rate in the single-stage and double-stage latent heat storage units was calculated by exhaustion.The results showed that for the single-stage latent heat storage,the optimal melting temperature is about 59.67℃,and the maximum waste heat utilization rate is about 0.41.For double-stage latent heat storage,the optimal melting temperatures are 73.68℃and 46.04℃,respectively,and the maximum waste heat utilization rate is about 0.52.This study provided theoretical guidance for improving the energy efficiency of air separation purification system.
作者 张春伟 张学军 赵阳 ZHANG Chunwei;ZHANG Xuejun;ZHAO Yang(Institute of Refrigeration and Cryogenics,Zhejiang University,Hangzhou 310027,Zhejiang,China;Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province,Hangzhou 310027,Zhejiang,China)
出处 《化工进展》 EI CAS CSCD 北大核心 2021年第6期3099-3106,共8页 Chemical Industry and Engineering Progress
基金 国家重点研发计划(2017YFB0603702) 国家自然科学基金重点项目(51636007,51976178)。
关键词 空分纯化系统 余热利用 相变 动态建模 微分进化算法 优化 air separation purification system waste heat utilization phase change dynamic modeling differential evolution algorithm optimization
  • 相关文献

参考文献3

二级参考文献30

  • 1方铭,陈光明.组合式相变材料组分配比与储热性能研究[J].太阳能学报,2007,28(3):304-308. 被引量:21
  • 2Tatsushi U, Tooru N, Morimitsu N. Development of Air-purification TSA Simulator for Cryogenic Air Separation Unit [J]. Nippon Sanso Engineering Report, 2003, (22): 13-18.
  • 3Ahn H W, Lee C H. Adsorption Dynamics of Water in Layered Bed for Air-drying TSA Process [J]. AIChE J., 2003, 49(6): 1601-1609.
  • 4Kim J H, Lee C H, Kim W S. Adsorption Equilibria of Water Vapor on Alumina, Zeolite 13X, and a Zeolite X/Activated Carbon Composite [J]. J. Chem. Eng. Data, 2003, 48(1): 137-141.
  • 5Ahn H W, Lee C H. Effects of Capillary Condensation on Adsorption and Thermal Desorption Dynamics of Water in Zeolite 13X and Layered Beds [J]. Chem. Eng. Sci., 2004, 59(13): 2727-2743.
  • 6Yang R T. Gas Separation by Adsorption Process [M]. Boston: Butterworth's, 1987. 51,178.
  • 7Ruthven D M. Principle of Adsorption and Adsorption Process [M]. New York: Wiley, 1984. 320.
  • 8Harwell J H, Liapis A I, Litchfield R. A Non-equilibrium Model for Fixed-bed Multi-component Adiabatic Adsorption [J]. Chem. Eng. Sci., 1980, 35(11): 2287-2296.
  • 9Carter J W, Husain H. The Simultaneous Adsorption of Carbon Dioxide and Water Vapor by Fixed Beds of Molecular Sieves [J]. Chem. Eng. Sci., 1974, 29(1): 267-273.
  • 10Pan C Y, Basmadjian D. An Analysis of Adiabatic Sorption of Single Solutes in Fixed Beds: Equilibrium Theory [J]. Chem. Eng. Sci., 1971, 26(1): 45-57.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部