摘要
随着机动化的成熟,更多的行人、车辆甚至天气等因素导致城市交通场景日趋复杂,且智能化的发展使得无人驾驶技术快速发展。更好地监测城市道路交通和完善无人驾驶场景归结为提高目标检测算法精准度问题。本文为了更准确地检测真实场景下的城市道路交通图片,首先利用非局部均值滤波(NLM)去除图片中的噪声,突出目标信息和位置,然后利用YOLOv5算法对交通图片进行目标检测,得到了更加精准的定位效果。
With the maturity of motorization,more pedestrian,vehicle and even weather factors lead to the increasingly complex city traff ic scene,and the development of intelligent technology makes the rapid development of driverless technology.Better monitoring of city road traff ic and improving the unmanned driving scene can be attributed to the problem of improving the accuracy of object detection algorithm.In this paper,in order to more accurately detect the city road traff ic images in the real scene,we f irst use the n on-local mean f ilter(NLM)t o r emove t he n oise in t he image,h ighlight t he object information and location,and then use the YOLOv5 algorithm to detect the traff ic image,and get a more accurate positioning effect.
作者
张长伦
张翠文
ZHANG Changlun;ZHANG Cuiwen(College of Science,Beijing University of Civil Engineering and Architecture,Beijing,102600 China)
出处
《科技创新导报》
2021年第7期172-174,共3页
Science and Technology Innovation Herald
基金
国家自然科学基金(No.61473111)
北京建筑大学北京未来城市设计高精尖创新中心资助项目(项目编号:UDC2019033324)
北京建筑大学研究生创新项目(项目编号:PG2020095)。