期刊文献+

密集杂波环境下基于KD树优化的DBR-RANSAC目标跟踪算法 被引量:4

DBR-RANSAC Target Tracking Algorithm Based on KD Tree Optimization in Dense Clutter Environment
下载PDF
导出
摘要 地面战场侦察雷达存在虚假目标多、真实目标难以区分等问题。为了降低复杂环境下密集杂波的影响,形成稳定航迹,并提高雷达数据处理的实时性,文中提出一种基于K维树优化的密度聚类随机采样一致性多目标跟踪算法,降低使用批处理进行航迹起始时对大量数据进行密度聚类带来的运算负担;同时,利用相控阵雷达的波位信息对数据关联过程进行优化。仿真和试验数据验证表明:文中提出的算法在密集杂波环境下可有效提高运算效率并保持较高的跟踪性能。 The ground battlefield reconnaissance radar has many false targets, and the real targets are difficult to distinguish. In order to reduce the impact of dense clutter in complex ground environments, make a stable track and improve the real-time performance of radar data processing, a density-based recursive random sample consensus multiple targets tracking algorithm based on K-dimensional tree optimization is proposed. This algorithm reduces the computational burden caused by the density clustering of a large amount of data at the track start using batch processing, at the same time, the wave position information of the phased array radar is used to optimize the data association process. By verifying the algorithm with simulation and experimental data, the results show that the proposed algorithm can effectively improve operation efficiency and maintain high tracking performance under dense clutter environment.
作者 孙藏安 连豪 史小斌 同非 SUN Cangan;LIAN Hao;SHI Xiaobin;TONG Fei(Xi’an ElectronicEngineering Research Institute,Xi’an 710100,China)
出处 《现代雷达》 CSCD 北大核心 2021年第5期16-23,共8页 Modern Radar
关键词 密集杂波 K维树 密度聚类随机采样一致性 航迹起始 数据关联 dense clutter K-dimensional tree density-based recursive random sample consensus track start data association
  • 相关文献

参考文献1

二级参考文献111

  • 1田淑荣,王国宏,何友.多目标跟踪的概率假设密度粒子滤波[J].海军航空工程学院学报,2007,22(4):417-420. 被引量:10
  • 2Mahler R P S. Multitarget Bayes filtering via first-order multitarget moments[J].IEEE Transactions on Aerospace and Electronic Systems,2003,(04):1152-1178.doi:10.1109/TAES.2003.1261119.
  • 3Mahler R P. Statistical Multisource-Multitarget Information Fusion[M].Norwood:Artech House,2007.
  • 4Bar-Shalom Y. Tracking and Data Association[M].San Diego:academic Press,1988.
  • 5Bar-Shalom Y,Kirubarajan T,Lin X. Probabilistic data association techniques for target tracking with applications to sonar,radar and EO sensors[J].IEEE Transactions on Aerospace and Electronic Systems,2005,(08):37-56.
  • 6Musicki D,Evans R. Joint integrated probabilistic data association:JIPDA[J].IEEE Transactions on Aerospace and Electronic Systems,2004,(03):1093-1099.doi:10.1109/TAES.2004.1337482.
  • 7Blackman S S. Multiple hypothesis tracking for multiple target tracking[J].IEEE Transactions on Aerospace and Electronic Systems,2004,(01):5-18.
  • 8Erdinc O,Willett P,Bar-Shalom Y. A physical-space approach for the probability hypothesis density and cardinalized probability hypothesis density filters[A].Orlando,FL:SPIE,2006.623619-623619-12.
  • 9Erdinc O,Willett P,Bar-Shalom Y. Probability hypothesis density filter for multitarget multisensor tracking[A].Philadelphia,PA:IEEE,2005.25-29.
  • 10Mahler R. A theory of PHD filters of higher order in target number[A].Orlando,FL:SPIE,2006.62350K-62350K-12.

共引文献49

同被引文献47

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部