摘要
震源定位是微地震/声发射数据处理的关键环节,其准确性与时效性是实现岩体破裂机制分析和岩体动力灾害监测预警的重要基础。基于大量岩土工程微地震/声发射监测震源定位案例与相关文献,归纳总结了国内外微地震/声发射监测相关的理论与应用现状。从震源定位原理出发,探讨震源定位精度的影响因素及相关问题的主要研究方向。通过分析得出震源定位问题属于受多因素干扰的复杂非线性反演过程,其定位精度受以下因素影响:(1)应力波噪声去除与到时拾取效果;(2)速度模型的准确性;(3)基于速度模型的走时算法精度;(4)震源定位方法反演性能;(5)监测设备性能与布设方案设计。基于微地震/声发射监测技术的海量数据处理需求,展望了深度学习等智能方法在提高震源定位精度方面的未来应用及发展方向。
Seismic source location plays a key role in microseismic/acoustic emission data processing. The accuracy and timeliness are important for the analysis of rock fracture mechanism as well as rockmass dynamic disaster prediction and early warning. Based on a large number of study cases and literatures related to geotechnical engineering microseismic/acoustic emission monitoring source location, the domestic and foreign studies related to the practices and theories of microseismic/acoustic emission monitoring are summarized.Starting from the principle of seismic source location, the main research directions of influencing factors and related issues of seismic source location accuracy are discussed. The source location problem is considered to be a complex nonlinear inversion process interfered by multiple factors,and its location accuracy is affected by the following factors:seismic waveform denoising and first arrival time picking,the precision of the velocity model,the accuracy of the travel time algorithm with respect of the velocity model, the inversion performance of the seismic source location method,and the instrument performance and the design of the monitoring system. Based on the requirements of the massive data processing in microseismic/acoustic emission monitoring technology,the future applications and development directions of intelligent methods such as deep learning for improving source location accuracy are proposed.
作者
吴顺川
郭超
高永涛
张朝俊
郑福润
WU Shunchuan;GUO Chao;GAO Yongtao;ZHANG Chaojun;ZHENG Furun(Faculty of Land Resources Engineering,Kunming University of Science and Technology,Kunming,Yunnan 650093,China;Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mine,University of Science and Technology Beijing,Beijing 100083,China)
出处
《岩石力学与工程学报》
EI
CAS
CSCD
北大核心
2021年第5期874-891,共18页
Chinese Journal of Rock Mechanics and Engineering
基金
国家自然科学基金资助项目(51934003,51774020)
云南省高层次引进人才创新创业团队。
关键词
岩石力学
岩石破裂
震源定位
定位精度
人工智能
深度学习
rock mechanics
rock failure
source location
location accuracy
artificial intelligence
deep learning