期刊文献+

基于小波分析和改进神经网络的采煤机截割部传动系统故障诊断 被引量:11

Fault Diagnosis of Shearer Cutting Part Transmission System Based on Wavelet Analysis and Improved Neural Network
下载PDF
导出
摘要 为了解决当前采煤机截割部传动系统故障诊断方法存在耗时长、误差大等问题,提出了基于小波分析和改进神经网络的采煤机截割部传动系统故障诊断方法。首先采集采煤机截割部传动系统故障数据,并采用小波分析对数据进行预处理,消除噪声的不利影响;然后提取故障特征并输入神经网络进行训练,采用粒子群算法优化神经网络的参数,从而建立采煤机截割部传动系统故障诊断模型。仿真实验结果表明,该方法提升了采煤机截割部传动系统故障诊断精度,大幅度减少了故障诊断时间,而且增强了抗噪声干扰能力。 In order to solve the problems of long time-consuming and large error existing in the current fault diagnosis method of the transmission system of the cutting part of shearer, a fault diagnosis method of the transmission system of the cutting part of shearer based on wavelet analysis and improved neural network was proposed. Firstly, the fault data of the transmission system of the cutting part of the shearer were collected, and the wavelet analysis was used to preprocess the data to eliminate the adverse effects of noise. Then the fault characteristics were extracted and input into the neural network for training,and the particle swarm optimization algorithm was used to optimize the parameters of the neural network,so as to establish the fault diagnosis model of the transmission system of the cutting part of the shearer.The simulation experimental results show that this method improves the fault diagnosis accuracy of shearer cutting part transmission system, greatly reduces the fault diagnosis time, and enhances the ability of anti noise interference.
作者 邓郁旭 Deng Yuxu(Tongren University,Tongren 554300,China)
机构地区 铜仁学院
出处 《煤矿机械》 2021年第6期180-183,共4页 Coal Mine Machinery
基金 铜仁学院教改项目(JG201347)。
关键词 神经网络 采煤机截割部 传动系统 故障诊断 噪声消除 neural network shearer cutting part transmission system fault diagnosis noise elimination
  • 相关文献

参考文献8

二级参考文献57

共引文献90

同被引文献144

引证文献11

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部