期刊文献+

基于数据驱动的非线性网络系统自适应迭代学习控制 被引量:1

Data driven adaptive learning control of nonlinear network system
原文传递
导出
摘要 针对非线性网络控制系统中测量数据的量化及随机丢包问题,给出一种基于数据驱动的自适应迭代学习控制算法.该算法能够保证系统在数据量化、随机丢包以及不确定迭代学习长度等因素的影响下,经过有限次迭代后输出轨迹跟踪误差收敛到零;借助伪偏导线性化方法,将非线性系统转换为线形时变系统形式;在线性系统框架下利用前一批次的系统输出信息更新自适应学习增益.与传统迭代学习控制算法不同的是,该算法无需预知迭代长度的先验信息和控制系统模型信息.最后通过Matlab仿真实验验证所提出算法的有效性. Aiming at the quantization of measurement data and random packet loss problems in nonlinear network control systems, this paper presents a data-driven based adaptive iterative learning control algorithm. This algorithm can ensure that the output tracking error can converge to zero after a limited number of iterations, although the system suffers from factors such as data quantification, random packet loss, and uncertainties. Resorting to a pseudo partial derivative based linearization method, the nonlinear system is converted into a linear time-varying system form. Under the framework of linear systems, the adaptive learning gain is updated by the previous batch outputs. Different from the traditional iterative learning control algorithm, the proposed one has no need to predict a priori iteration length and the control system model.Finally, the effectiveness of the proposed algorithm is verified by simulations.
作者 刘红霞 史玄玄 沈谋全 LIU Hong-xia;SHI Xuan-xuan;SHEN Mou-quan(College of Electrical Engineering and Control Science,Nanjing Tech University,Nanjing 211800,China)
出处 《控制与决策》 EI CSCD 北大核心 2021年第6期1523-1528,共6页 Control and Decision
基金 国家自然科学基金项目(61403189)。
关键词 数据驱动设计 数据量化 迭代学习控制 随机丢包 非线性系统控制 随机迭代长度 data driven design data quantization iterative learning control packet dropout nonlinear systems control random iteration length
  • 相关文献

参考文献2

二级参考文献14

  • 1孙明轩.初态学习下的迭代学习控制[J].控制与决策,2007,22(8):848-852. 被引量:23
  • 2Amann N, Owens D H, Rogers E. Iterative learning control for discrete-time systems with exponential rate of convergence[J]. Control Theory and Application, 1996, 143(2): 217-224.
  • 3Hladowski L, Galkowski K, Cai Z L, et al. Experimentally supported 2D systems based iterative learning control law design for error convergence and performance[J]. Control Engineering Practice, 2010, 18(4): 339-348.
  • 4Xu H W. Optimal iterative learning control for nonlinear discrete-time systems[C]. Computing, Control and Industrial Engineering(CCIE). Wuhan: Conference Publications, 2010: 190-193.
  • 5Chu B, Cai Z, Owens D H, et al. Experimental verification of accelerated norm-optimal iterative learning control[C]. Int Conf on Control 2010. Coventry: IEEE Press, 2010: 211-216.
  • 6Togai M, Yamano. Analysis and design of an optimal learning control scheme for industrial robots: A discrete system approach[C]. Proc of 24th Conf on Decision and Control. Lauderdale Florida: IEEE Press, 1985: 1399-1404.
  • 7Hatzikos V, Hatonen J, Owens D H. Genetic algorithms in norm-optimal linear and non-linear iterative learning control[J]. Int J of Control, 2004, 77(2): 188-197.
  • 8Lin C M, Li M C, Ting A B, et al. A robust self-learning PID control system design for nonlinear systems using a particle swarm optimization algorithm[J]. Int J of Machine Learning and Cybernetics, 2011, 2(4): 225-234.
  • 9Jeroen V W, Tijs D, Okko B. Iterative learning control for uncertain systems: Robust monotonic convergence analysis[J]. Automatica, 2009, 45(10): 2383-2391.
  • 10Owens D H, Feng K. Parameter optimization in iterative learning control[J]. Int J of Control, 2003, 76(11): 1059-1069.

共引文献6

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部