期刊文献+

FA-kmeans算法下面向城乡物流网络优化的网点选址研究 被引量:5

Site Selection for Urban and Rural Logistics Network Optimization Based on FA-kmeans Algorithm
原文传递
导出
摘要 为提升城乡物流网络下物流运行效率,需要重视物流节点建设。基于城乡一体化背景下,研究组成复杂、配送模式特殊的城乡物流配送中心选址问题。利用岭回归、因子分析和k-means聚类相结合的——FA-kmeans算法,选择绵阳市三台县为例,以物流需求量为基本前提,对经济性、需求性、交通性下的各项指标进行因子分析,提取关键因子作为评价村镇等级的依据,继而利用k-means划分村镇重要度,确定当地适宜的配送中心选址,为区域内的城乡物流配送中心选址提供一定借鉴意义。 In order to improve the efficiency of logistics operation under the urban and rural logistics network, it is necessary to pay attention to the construction of logistics nodes. Based on the background of urban-rural integration, research on the location of urban and rural logistics distribution centers with complex composition and special distribution modes. the FA-kmeans algorithm, which combines ridge regression, factor analysis, and k-means clustering, is selected as an example in Santai County, Mianyang City. Based on the basic premise of logistics demand, it is important to Carry out factor analysis on various indicators under the nature and traffic, extract key factors as the basis for evaluating the level of villages and towns, and then use k-means to classify the importance of villages and towns, and finally determine the location of a suitable local distribution center for urban and rural logistics distribution in the region The location of the center provides a certain reference.
作者 梁玥 陈思 汤银英 LIANG Yue;CHEN Si;TANG Yinying(School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 611756,China;National and Local Joint Engineering Laboratory of Comprehensive Transportation Intelligence,Southwest Jiaotong University,Chengdu 610041,China;National Engineering Laboratory of Comprehensive Transportation Big Data Application Technology,Southwest Jiaotong University,Chengdu 610041,China)
出处 《综合运输》 2021年第5期115-122,共8页 China Transportation Review
基金 中国铁路总公司科技研究开发计划重点课题(2018BX15) 教育部人文社会科学研究西部青年基金项目(16XJCZH001) 四川省社会科学重点研究基地四川县域经济发展研究中心项目(XY2018024)。
关键词 城乡一体化 物流网络 配送中心选址 K-MEANS聚类 Urban-rural integration Logistics network Distribution center location K-means clustering
  • 相关文献

参考文献7

二级参考文献44

共引文献37

同被引文献47

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部