期刊文献+

结合BM3D去噪与极限学习机的SAR目标分类方法 被引量:4

An SAR Target Classification Method Based on BM3D Denoising and Extreme Learning Machine
下载PDF
导出
摘要 合成孔径雷达(SAR)目标分类一般通过特征提取和分类决策具体实施。采用3维块匹配滤波(BM3D)去噪算法对SAR图像进行处理,减轻噪声干扰的影响。在此基础上,采用极限学习机(ELM)对去噪后的图像进行决策分类。ELM具有很高的分类效率和分类精度,其对噪声的敏感性可通过BEMD去噪算法克服。因此,通过结合BM3D以及ELM的优势可提高目标分类的整体性能。基于MSTAR数据集对提出方法进行测试,结果表明了所提方法的有效性和稳健性。 Synthetic Aperture Radar(SAR)target classification is generally performed by feature extracting and classification decision-making.The Block-Matching and 3D filtering(BM3D)denoising algorithm is applied to SAR images to relieve noise corruption.Afterwardsthe Extreme Learning Machine(ELM)is used to classify the denoised SAR images.ELM has high classification efficiency and precision.In additionits sensitivity to noise corruption can be effectively relieved by Bi-dimensional Empirical Mode Decomposition(BEMD)denoising algorithm.Thereforethe overall classification performance can be enhanced by combining the strengths of BM3D with that of ELM.The proposed method is tested on the MSTAR dataset and the results have proved its validity and robustness.
作者 刘志超 屈百达 LIU Zhichao;QU Baida(School of Internet of Things Engineering Jiangnan University Wuxi 214000,China;School of Internet of Things Engineering Wuxi Taihu University Wuxi 214000,China)
出处 《电光与控制》 CSCD 北大核心 2021年第6期29-32,共4页 Electronics Optics & Control
基金 江苏省自然科学基金(BK20161142) 江苏省高校自然科学面上项目(19KJB470033)。
关键词 合成孔径雷达 目标分类 BM3D去噪 极限学习机 Synthetic Aperture Radar(SAR) target classification BM3D denoising Extreme Learning Machine(ELM)
  • 相关文献

参考文献11

二级参考文献96

  • 1韩萍,吴仁彪,王兆华.基于KFD准则的SAR目标特征提取与识别[J].现代雷达,2004,26(7):27-30. 被引量:11
  • 2刘相滨,邹北骥,孙家广.基于边界跟踪的快速欧氏距离变换算法[J].计算机学报,2006,29(2):317-323. 被引量:36
  • 3徐牧,王雪松,肖顺平.基于Hough变换与目标主轴提取的SAR图像目标方位角估计方法[J].电子与信息学报,2007,29(2):370-374. 被引量:16
  • 4Karhunen J, Joutsensalo J. Generalizations of principal component analysis, optimization problems and neural net- works [ J ]. Neural Networks, 1995, S (4) : 549-562.
  • 5Comon P. Independent component analysis: A new con- cept? [J]. Signal Processing, 1994,36(3) :287-314.
  • 6Belhumeur P N, Hespanha J P, Kriegman J K. Eigenfaces vs fisherfaces: recognition using class specific linear pro- jection[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19:711-720.
  • 7Donoho D L. Compressed Sensing [ J ]. IEEE Transac- tions on Information Theory,2006, 52(4) :1289-1306.
  • 8Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem[ J]. Neural Com- putation, 1998,10 (5) : 1299-1319.
  • 9Wright J, Yang A Y, Ganesh A, etc. Robust Face Recog- nition via Sparse Representation [ J ]. 2009, 31 ( 2 ) : 210-227.
  • 10Figueiredo M A T, Nowak R D, Wright S J. Gradient Pro- jection for Sparse Reconstruction: Application to Com- pressed Sensing and Other Inverse Problems [ J ]. IEEE journals of selected topics in signal processing, 2007,1 (4) :586-597.

共引文献151

同被引文献51

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部