摘要
每年全世界产出大量科技文献,形成的科技文献大数据是科研进展最直接的体现。当前,基于摘要和全文对科技文献内容进行深层次挖掘正在得到各方重视。文章分析了近年来国外新型科技文献挖掘与服务系统的最新实践,以及DARPA、IARPA等机构相关项目布局,对基于内容的科技文献大数据挖掘与应用现状及趋势进行了详细分析。
Substantial scientific and technical literature is produced in the world every year, and the resulting big data is the most direct embodiment of scientific research progress.At present, deep mining of abstract or full text of scientific and technical literature is gaining attention from many parties.In this paper, we analyze the latest practice of some new literature mining and service systems, as well as the related projects of DARPA,IARPA,etc.We elaborate on the current situation and trend of content-based mining and application of scientific and technical literature big data.
出处
《情报理论与实践》
CSSCI
北大核心
2021年第6期154-157,共4页
Information Studies:Theory & Application
关键词
科技文献
领域知识图谱
碎片化
开放数据
数据挖掘
大数据
scientific and technical literature
domain knowledge graph
fragmentation
open data
data mining
big data