期刊文献+

基于目标检测网络的煤矸石识别 被引量:3

Identification of coal and gangue based on object detection network
下载PDF
导出
摘要 按照实际工况在实验室搭建煤矸分选平台,采用深层目标检测网络对煤矸石进行在线识别,根据分选时煤矸石的形状和大小,将目标检测网络中的特征金字塔设定为3个尺度,并确定锚(参考边界框)的形状和大小;比较10个IOU(Intersection-over-union)阈值下验证集的平均精度(AP),并在煤矸石分选平台对目标检测网络进行动态测试。结果表明:IOU为0.8时,目标检测网络的分类和定位效果最佳,动态识别的精确度和召回率均达到95%以上。 A platform of coal-gangue separation was set up in the laboratory according to the actual working conditions.Adopting object detection network to identify coal and gangue online and according to the shape and size of coal gangue during sorting,the feature pyramid in the object detection network was set as three scales,and the shape and size of the anchor were determined.Comparing the AP(average precision)of the validation set under 10 IOU(intersection over union)thresholds,and a dynamic test was carried out on the separation platform built.The results show that the classification and positioning effect of the object detection network was the best when the IOUwas 0.8,and the precision and recall of dynamic identification can reach more than 95%.
作者 高新宇 李博 王璐瑶 李廉洁 王学文 GAO Xinyu;LI Bo;WANG Luyao;LI Lianjie;WANG Xuewen(College of Mechanical and Vehicle Engineering,Shanxi Provincial Key Laboratory of Coal Mining Equipment,Taiyuan University of Technology,Taiyuan 030024,China)
出处 《中国粉体技术》 CAS CSCD 2021年第4期77-83,共7页 China Powder Science and Technology
基金 山西省重点研发计划项目,编号:201903D121074。
关键词 煤矸分选 图像处理 深度学习 目标检测 coal-gangue separation image processing deep learning object detection
  • 相关文献

参考文献9

二级参考文献86

  • 1王飞跃.平行系统方法与复杂系统的管理和控制[J].控制与决策,2004,19(5):485-489. 被引量:332
  • 2纪钢,李冬辉,吴学胜.天然γ射线穿过煤的规律性研究[J].煤炭学报,1994,19(1):65-70. 被引量:6
  • 3王家臣.我国综放开采技术及其深层次发展问题的探讨[J].煤炭科学技术,2005,33(1):14-17. 被引量:161
  • 4于凤英,田慕琴,胡金发.基于神经网络的煤岩界面识别[J].机械工程与自动化,2007(4):4-6. 被引量:7
  • 5GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 6HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 7KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 8BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 9WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 10BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.

共引文献701

同被引文献20

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部