期刊文献+

Machine Learning based Optical Proximity Correction Techniques

下载PDF
导出
摘要 The shrinking of the size of the advanced technological nodes brings up new challenges to the semiconductor manufacturing community.The optical proximity correction(OPC)is invented to reduce the errors of the lithographic process.The conventional OPC techniques rely on the empirical models and optimization methods of iterative type.Both the accuracy and computing speed of the existing OPC techniques need to be improved to fulfill the stringent requirement of the research and design for latest technological nodes.The emergence of machine learning technologies inspires novel OPC algorithms.More accurate forward simulation of the lithographic process and single turn optimization methods are enabled by the machine learning based OPC techniques.We discuss the latest progress made by the OPC community in the process simulation and optimization based on machine learning techniques.
出处 《Journal of Microelectronic Manufacturing》 2020年第4期59-68,共10页 微电子制造学报(英文)
基金 by National Science and Technology Major Project of China(2017ZX02315001-003,2017ZX02101004-003) National Natural Science Foundation of China(61874002,61804174),Beijing Natural Fund(4182021).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部