期刊文献+

分子动力学模拟揭示MTHFR的温度耐受性机制

Molecular Dynamics Simulation Reveals the Mechanism of Temperature Tolerance of Methylenetetrahydrofolate Reductase
下载PDF
导出
摘要 为了研究亚甲基四氢叶酸还原酶(MTHFR)的温度耐受性,我们采用分子动力学模拟的方法,构建了四种模拟体系(37、45、55和65℃)并对MTHFR分别进行了100ns的计算,分析了酶活性中心的差异及其引起的构象变化。研究发现,在37和45℃条件下,MTHFR整体构象比较稳定;大于55℃时,蛋白的三维结构可能丧失柔性,这表明蛋白质可能已达到熔解温度,通过构象分析发现高温会破坏FAD结合位点微环境。本研究在原子水平揭示了MTHFR的温度耐受等关键信息。 In order to study the temperature tolerance of methylenetetrahydrofolate reductase(MTHFR),four simulation systems(37℃,45℃,55℃and 65℃)were constructed by molecular dynamics simulation,and the MTHFR was calculated for 100 ns,respectively.The differences of enzyme active centers and the conformational changes were analyzed.It was found that the overall conformation of MTHFR was stable at 37℃and 45℃;when the temperature was higher than 55℃,the three-dimensional structure of the protein might lose its flexibility,which indicated that the protein might have reached the melting temperature.Through conformational analysis,we found that high temperature would destroy the microenvironment of FAD binding sites.This study reveals the key information of temperature tolerance of MTHFR at the atomic level.
作者 王若男 曹锟 吴赟 Wang Ruonan;Cao Kun;Wu Yun(Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics,Scientific Research Platform Service Management Center,Guangdong Medical University,Dongguan 523808,China)
机构地区 广东医科大学
出处 《广东化工》 CAS 2021年第10期25-27,共3页 Guangdong Chemical Industry
基金 广东医科大学博士学位人员科研启动基金(B2019018) 广东医科大学科研基金自然科学类面上培育项目(GDMUM2020016)。
关键词 分子动力学模拟 亚甲基四氢叶酸还原酶 温度 稳定性 黄素腺嘌呤二核苷酸 molecular dynamics simulation methylenetetrahydrofolate reductase temperature stability flavin adenine dinucleotide
  • 相关文献

参考文献3

二级参考文献95

  • 1孙淑娜,桂永浩.叶酸缺乏导致人类先天性异常的机制研究进展[J].中国当代儿科杂志,2006,8(6):527-530. 被引量:6
  • 2郑晓瑛,宋新明,陈功,陈佳鹏,纪颖,武继磊,刘菊芬,张蕾,范向华.中国出生缺陷高发地区出生缺陷的发生水平和流行病学特征[J].中华流行病学杂志,2007,28(1):5-9. 被引量:42
  • 3Hoyer, W.; Cherny, D.; Subramaniam, V.; Jovin, T. M. M. Biochemistry 2004, 43 (51), 16233.
  • 4Dunker, A. K.; Brown, C. J.; Lawson, J. D.; Iakoucheva, L. M.; Obradovic, Z. Biochemistry 2002, 41 (21), 6573.
  • 5Bertoncini, C. W.; Jung, Y. S.; Fernandez, C. O.; Hoyer, W.; Griesinger, C.; Jovin, T. M.; Zweckstetter, M. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (5), 1430.
  • 6Dedmon, M. M.; Lindorff-Larsen, K.; Christodoulou, J.; Vendruscolo, M.; Dobson, C. M. ,L Am. Chem. Soc. 2005, 127 (2), 476.
  • 7Spillantini, M. G.; Crowther, R. A.; Jakes, R.; Hasegawa, M.; Goedert, M. Proc. Natl. Acad. Sei. U. S. A. 1998, 95 (11), 6469.
  • 8Masliah, E.; Rockenstein, E.; Veinbergs, I.; Mallory, M.; Hashirnoto, M.; Takeda, A.; Sagara, Y.; Sisk, A.; Mucke, L. Science 2000, 287 (5456), 1265.
  • 9Allsop, D.; Mayes, J.; Moore, S.; Masad, A.; Tabner, B. J. Biochem. Soe. Trans. 2008, 36, 1293.
  • 10Paik, S. R.; Shin, H. J.; Lee, J. H.; Chang, C. S.; Kim, J. Bioehem. J. 1999, 340, 821.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部