期刊文献+

基于表面等离激元谐振腔的窄谱增强传感器 被引量:7

Narrow-Spectrum Enhanced Sensor Based on Surface Plasmon Resonator
原文传递
导出
摘要 表面等离激元是一种局域在金属和介质之间的电磁波,与金属表面自由电子的集体振荡有关,具有高度局域和近场增强的特性。为此,利用表面等离激元谐振腔对红外窄谱增强成像设备进行设计,单个纳米等离激元谐振腔由两片金属银层构成。模拟结果表明,该纳米等离激元谐振腔在红外波段起到窄谱吸收的作用,在纳米等离激元谐振腔中,吸收波段得到较大的电场增强,并且可以同时屏蔽不需要的波段。这种窄谱的CCD(Charge Coupled Device)有望应用在高分辨成像和日用红外CCD等领域,并且该设计展示出利用硅半导体CMOS(Complementary Metal Oxide Semiconductor)平台制作波长约为800 nm的近红外CCD的商业应用价值。 As a kind of electromagnetic wave localized between metal and medium,surface plasmons is related to the collective oscillation of free electrons on the metal surface and has the characteristics of high-level localization and near-field enhancement.Therefore,an infrared narrow spectrum enhanced imaging device is designed by using surface plasmon resonator.A single nanometer plasmon resonator is composed of two silver layers.The simulation results show that the resonator plays a narrow-spectrum absorption role in the infrared band.In the nanometer plasmon resonator,the absorption band is greatly enhanced by an electric field,and the undesired bands can be shielded at the same time.Such a narrow-spectrum CCD(Charge Coupled Device)is expected to be used in high-resolution imaging and daily infrared CCD,and the design demonstrates the commercial value of using a silicon-semiconductor CMOS(Complenientary Metal Oxide Semiconductor)platform to fabricate near-infrared CCD with wavelengths around 800 nm.
作者 王琳 张磊 Wang Lin;Zhang Lei(Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China;Uuiuersitiy of Chinese Academy of Sciences,Beijing 100049,China;Sha?ighai Sifnchrotroii Radiation Facility,Shanghai 201204,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2021年第7期130-135,共6页 Acta Optica Sinica
基金 国家自然科学基金(11675249)。
关键词 表面光学 表面等离激元 微纳光学 近红外 时域有限差分 optics at surfaces surface plasmons micro-nano optics near infrared finite-difference time-domain
  • 相关文献

参考文献6

二级参考文献57

  • 1顾本源.表面等离子体亚波长光学原理和新颖效应[J].物理,2007,36(4):280-287. 被引量:40
  • 2M.A.Noginov, G.Zhu, M.Bahoura, J.Adegoke, C.E.Small, B.A.Ritzo, V.P.Drachev, and V.M.Shalaev, Opt.Lett.31, 3022 (2006).
  • 3J.Seidel, S.Crafstrom, and L.Eng, Phys.Rev.Lett.94, 177401 (2005).
  • 4M.A.Noginov, G.Zhu, M.Mayy, B.A.Ritzo, N.Nogi?nova, and V.A.Podolskiy, Phys.Rev.Lett.101,226806 (2008).
  • 5A.A.Govyadinov and V.A.Podolskiy, Phys.Rev.Lett.97, 223902 (2006).
  • 6Y.Shen and G.P.Wang, Opt.Express 17, 12807 (2009).
  • 7D.J.Bergman and M.1.Stockman, Phys.Rev.Lett.90, 027402 (2003).
  • 8M.1.Stockman, Nat.Photon.2, 327 (2008).
  • 9N.1.Zheludev, S.L.Prosvirnin, N.Papasimakis, and V.A.Fedotov, Nat.Photon.2, 351 (2008).
  • 10M.A.Noginov, G.Zhu, A.M.Belgrave, R.Bakker, V.M.Shalaev, E.E.Narimanov, S.Stout, E.Herz, T.Su?teewong, and U.Wiesner, Nature 460, ll10 (2009).

共引文献28

同被引文献35

引证文献7

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部