期刊文献+

考虑订单类型的两台平行批处理机在线调度模型研究 被引量:3

Online Two Parallel Batch Machines Scheduling with Order Types
原文传递
导出
摘要 探讨了两台平行批处理机的调度决策问题,着重考虑了订单具有不同加工类型、同一批次只能加工相同类型的订单以及机器批容量有限的调度情形。针对订单实时到达且需要立即决策是否接受的实际情景,运用在线理论构建了平行机批调度在线模型。证明了该问题的竞争比下界为2Bw/(1+√Bw),其中B和w分别表示批容量和单个订单的最大完工收益。进而设计给出了收益阈值算法PT并证明其对于订单具有紧交货期限的情形竞争比为2(1+Bw)(1+√Bw);对于非紧交货期限的情形,证明了修正的PT算法具有竞争比为1+2(1+Bw)(1+√Bw)。 The problem of order processing on two parallel batch machines where orders are of different types is investigated in this paper.Each order type corresponds to a uniform processing time,order size and revenue of order.The machines are of bounded capacities,and each processing batch consists of orders with identical type.The problem originates from catering service industry and other manufacturing applications in internet economy era,where processing orders collected from different customers over internet channel can be handled jointly and simultaneously.This processing mode can improve the utilization efficiency of the corresponding manufacturing or service resources,and make customer demand be better satisfied.The online scenario is considered where orders arrive over time,and the full information of each order can only be released to the decision-maker on its arrival.The decision-maker has to decide immediately whether to accept the order on its arrival and make a feasible processing schedule for accepted orders as well.An online scheduling model is established,where the objective of the model is to maximize the total revenue of completed order.For solving online problems,the general idea is to design online algorithms,and the parameter of competitive ratio is usually adopted to measure their performances.A lower bound of competitive ratio is first proven for the considered problem such that any online algorithms cannot be better than2Bw/(1+√Bw)-competitive,where B and w are the batch capacity and maximum revenue of one order,respectively.Then both cases with tight and non-tight deadlines of orders are investigated for the problem under consideration,constructing online algorithms and using the method of worst-case analysis to prove their competitive ratios theoretically.For the case with tight deadline,an online algorithm named Profit Threshold is proposed and its competitive ratio of2(1+Bw)(1+√Bw)is proven.For the case with non-tight deadline,a revised Profit Threshold algorithm is presented and it is proved1+2(1+Bw)(1+√Bw)-competitive.Finally it is shown that for both cases,the gaps between upper bounds and lower bounds of competitive ratio are small,especially when the values of batch capacity and maximum revenue of one order are relatively large.
作者 郑斐峰 靳凯媛 张娥 刘明 ZHENG Fei-feng;JIN Kai-yuan;ZHANG E;LIU Ming(Glorious Sun School of Business and Management,Donghua University,Shanghai 200051,China;School of Information Management and Engineering,Shanghai University of Finance and Economics,Shanghai 200433,China;School of Economics and Management,Tongji University,Shanghai 200092,China)
出处 《中国管理科学》 CSSCI CSCD 北大核心 2021年第5期173-179,共7页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(71832001,71771048,71531011,71571134) 上海市浦江人才项目(17PJC046) 中央高校基本科研专项资金资助项目(2232018H-07) 中央高校基本科研业务费专项资金项目(CUSF-DH-D-2021067)。
关键词 调度决策 平行批处理机 在线算法 竞争比 scheduling parallel batch machines online algorithm competition ratio
  • 相关文献

参考文献1

二级参考文献19

  • 1越民义,韩继业.n个零件在m台机床上的加工顺序问题(I)[J].屮闺科学,1975,5:462-470.
  • 2唐国春.一万米高空是晴天——教坛漫笔[M].珠海:珠海出版社,2011.
  • 3国家自然科学基金委员会.国家自然科学基金申请代码[EB/OL][2014-7-20]. http://www.nsfc.gov.cn/nsfc/cen/xmzn/2014xmzn/17.
  • 4BAKER K R. Introduction to Sequencing and Scheduling [M]. NewYork: John Wiley & Sons, 1974.
  • 5PINEDO M L. Scheduling: theory, algorithms, and systems [M]. 3rdEdition. New York: Springer, 2008.
  • 6BRUCKER P, KNUST S. Complexity results for schedulingproblems [EB/OL]. (2009-6-29)[2014-7-20]. http://www.informatik.uni-osnabrueck.de/knust/class.
  • 7POTTS C N, STRUSEVICH V A. Fifty years of scheduling: a surveyof milestones [J]. Journal of the Operational Research Society, 2009,60:S41-S68.
  • 8LAWLER E L, LENSTRA J K, RINNOOY KAN A H G, et al.Sequencing and scheduling: Algorithms and complexity [M]//GRAVESS C, et al. Handbooks in OR & MS(Volume 4). Amsterdam: ElsevierScience Publishers B V, 1993: 445-522.
  • 9唐国春.供应链排序的模型和方法[C]〃袁亚湘,等,中国运筹学会第八届学术交流会论文集.香港:Globa丨-Link Informatics Limited,2006: 495-502.
  • 10KUMAR P R. Re-entrant lines [J]. Queuing Systems, 1993,13: 87-110.

共引文献4

同被引文献86

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部