期刊文献+

一道伊朗奥林匹克几何试题的三种证法

原文传递
导出
摘要 1试题呈现(第6届伊朗奥林匹克几何初级组第2题)如图1,矩形ABCD与PQRD的面积相等,且对应边平行.设N、M、T分别是线段QR、PC、AB的中点,证明:N、M、T三点共线.2思路分析由矩形ABCD与PQRD的面积相等,可得AB·AD=PQ·QR.欲证明N、M、T三点共线,一方面可考虑连接TN,设线段TN与线段PC相交于点M′,然后借助关系式AB·AD=PQ·QR证明M′是线段PC的中点。
作者 张宁
出处 《中学生数学》 2021年第10期27-28,共2页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部