期刊文献+

ECMWF气象场驱动长三角PM_(2.5)预报与最优集成 被引量:3

Forecast of PM_(2.5) over Yangtze River Delta by ECMWF data driving and optimal integration
原文传递
导出
摘要 采用华东区域大气环境数值预报业务系统(RAEMS-GFS)的整体框架和欧洲中期天气预报中心(ECMWF)高分辨率数值天气预报数据,建立了ECMWF气象场驱动的区域空气质量数值预报系统(RAEMS-EC).评估结果显示:RAEMS-EC对2019年秋冬季长三角城市PM_(2.5)浓度和污染程度具有良好的预报准确性,其性能与RAEMS-GFS具有高度可比性的同时也存在一定的差异,数值上则有较明显的系统性偏高.RAEMS-EC与RAEMS-GFS双模式最优集成预报(OCF)可以大幅提升预报效果,长三角各城市PM_(2.5)浓度总体预报效果指标提升12%~83%,各指标在80%以上城市为正效果,PM_(2.5)污染预报TS评分也得到明显提升(14%),OCF基本消除了数值预报系统性偏高的不足. In this paper, the Regional Atmospheric Environmental Modeling System for eastern China driven by ECMWF high resolution numerical prediction data(RAEMS-EC) was established based on the framework of RAEMS driven by GFS data(RAEMS-GFS). The evaluation results showed that RAEMS-EC had high prediction accuracy for both PM_(2.5) concentration and pollution degree over the Yangtze River Delta region in autumn and winter of 2019. The performance of RAEMS-EC indicated some difference from that of RAEMS-GFS although they had high similarity. Moreover, RAEMS-EC obviously overestimated the concentration of PM_(2.5). The optimal consensus forecast(OCF) was applied to assemble RAEMS-EC and RAEMS-GFS and it significantly improved the forecast capability:(1) the forecast capability indexes for city PM_(2.5) concentration were improved by 12%~83%, which gave positive effect for each index over 80% cities;and(2)the TS score for PM_(2.5) pollution degree improved by 14%. The application of OCF basically eliminated the overestimation of RAEMS-EC.
作者 周广强 余钟奇 瞿元昊 ZHOU Guangqiang;YU Zhongqi;QU Yuanhao(Yangtze River Delta Center for Environmental Meteorology Prediction and Warning,Shanghai 200030)
出处 《环境科学学报》 CAS CSCD 北大核心 2021年第5期1656-1664,共9页 Acta Scientiae Circumstantiae
基金 国家重点研发计划(No.2016YFC0201900) 上海市科技计划项目(No.20dz1204000)。
关键词 PM_(2.5) ECMWF 数值预报 最优集成预报 WRF-Chem 长三角 PM_(2.5) ECMWF numerical forecast OCF WRF-Chem Yangtze River Delta
  • 相关文献

参考文献15

二级参考文献182

共引文献1852

同被引文献61

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部