期刊文献+

基于双边滤波与自编码器的对抗样本防御方法

Anti-Sample Defense Method Based on Bilateral Filtering and Autoencoder
下载PDF
导出
摘要 深度学习在图像分类等领域被广泛应用的同时,也存在着对抗样本攻击的问题。针对这一问题,提出基于双边滤波与卷积降噪自编码器的对抗样本防御方法BF-CDAE。首先对加入对抗扰动的图片进行双边滤波,初步去除图片的噪音扰动,然后将去噪后的图片送入卷积降噪自编码器中,对高维数据进行特征提取,进一步去除对抗样本中误导模型识别的噪音。实验结果表明,在不影响原图像分类结果的同时,针对采用FGSM方法生成的对抗样本攻击,利用该防御方法可将分类准确率恢复到93.14%,证明了该防御方法的有效性。 While deep learning is widely used in image classification and other fields,it also has the problem of resisting sample attacks.In response to this problem,an adversarial sample defense method BF-CDAE based on bilateral filtering and convolutional noise reduction autoencoder is proposed.Firstly,bilateral filtering is performed on the pictures that are added to the anti-disturbance,and the noise disturbance of the picture is initially removed,and then the denoised pictures are sent to the convolutional denoising autoencoder,and the high-dimensional data is feature extracted to further remove the misleading in the counter-sample model recognition noise.The experimental results show that,while not affecting the original image classification results,the use of this defense method can restore the classification accuracy to 93.14%in the attack based on the adversarial sample generated by the FGSM method,which proves the effectiveness of the defense scheme.
作者 王成 李永忠 WANG Cheng;LI Yong-zhong(School of Computer,Jiangsu University of Science and Technology,Zhenjiang 212003,China)
出处 《软件导刊》 2021年第6期209-213,共5页 Software Guide
基金 国家自然科学基金项目(61471182) 江苏省研究生科研创新计划项目(KYCX20_2993)。
关键词 图像分类 对抗样本 双边滤波器 卷积降噪自编码器 深度学习 image classification adversarial samples bilateral filtering convolutional noise reduction autoencoder deep learning
  • 相关文献

参考文献10

二级参考文献78

  • 1殷敬伟,惠俊英,蔡平,王逸林.基于分数阶Fourier变换的水声信道参数估计[J].系统工程与电子技术,2007,29(10):1624-1627. 被引量:13
  • 2LIVNY Y, YAN F, OI.SON M, et al. Automatic reconstruction of tree skeletal structures from point clouds [ J]. ACM Transactions on Graphics: Proceedings of ACM SIGC, RAPH Asia 2010, 2010, 29 (6): Article No. 151.
  • 3WANG X, LI Z, MAI Y, et al. Robust .denoising of unorganized point clouds [ C]// ICISS 2013: Proceedings of the 2011 Interna- tional Conference on Intelligent Computing and Integrated Systems. Piscataway: 1EEE, 2013:1-3.
  • 4ROSMAN G, DUBROVINA A, KIMMEL R. Patch-collaborative spectral surface denoising [ J]. Computer Graphics Forum, 2013, 32( 8):1 -12.
  • 5XU S, YANG Z, WU W. Algorithm of 3D reconstruction based on point cloud segmentation denoising [C]//ICISE 2010: Proceedings of the 2010 2nd International Conference on Information Science and Engineering. Piscataway: 1EEE, 2010:3510-3513.
  • 6YANG Z, XIAO D. A systemic point-cloud de-noising and smoot- hing method for 3D shape reuse [ C]//ICARCV 2012: Proceedings of the 2012 12th International Conference on Control Automation Ro- botics & Vision. Piscatawav: IEEE, 2012:1722-1727.
  • 7JUN S. Two-stage point-sampled model denoising by robust ellip- soid criterion and mean shift [ C]//Proceedings of the 2013 Third International Conference on Intelligent System Design and Engi- neering Applications. Washington, DC: IEEE Computer Society, 2013:1581 - 1584.
  • 8FLEISHMAN S, DRORI I, COHEN-OR D. Bilateral mesh denois- ing [ J]. ACM Transactions on Graphics: Proceedings of ACM SIG- GRAPH 2003, 2003, 22(3): 950-953.
  • 9GRIMM C, SMART W D. Shape classification and normal estima- tion for non-uniformly sampled, noisy point data [ J]. Computers & Graphics, 2011, 35(4): 904-915.
  • 10LI B, SCHNABEL R, KLEIN R, et aL Robust normal estimation for point clouds with sharp features [ J]. Computers & Graphics, 2010, 34(2) : 94 - 106.

共引文献202

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部