期刊文献+

基于Spark和深度神经网络的短期电力负荷预测方法 被引量:8

Short-Term Power Load Forecasting Method Based on Spark and Deep Neural Network
下载PDF
导出
摘要 针对单机计算资源不足和提高负荷预测精度,提出一种基于Spark和粒子群优化深度神经网络的短期负荷预测模型。通过引入Spark计算平台,将深度神经网络模型部署在平台上,对深度神经网络模型的网络结构和权重及阈值参数利用粒子群算法优化,再利用优化后的深度神经网络模型预测电力负荷。通过实验分析,结果表明提出的电力负荷预测方法不仅精度上还是运行效率上优于其他比较的负荷预测方法,而且并行性较好,运行效率优于单机电力负荷预测模型。 Aiming at the shortage of computing resources of single computer and the improvement of load forecasting accuracy,this paper proposes a short-term power load forecasting model based on Spark and particle swarm optimization(PSO)deep neural network.By introducing Spark computing platform,the deep neural network model is deployed on the platform,and the network structure,weight and threshold parameters of deep neural network model are optimized by using PSO,and then the optimized deep neural network model is used for power load forecasting.Experimental analyses have been carried out,and the results show that the proposed load forecasting method is not only superior to other load forecasting methods in accuracy and operation efficiency,but also has good parallelism,and the operation efficiency is better than that of single-computer load forecasting model.
作者 张思扬 匡芳君 周文俊 ZHANG Siyang;KUANG Fangjun;ZHOU Wenjun(School of Information Engineering,Wenzhou Business College,Wenzhou Zhejiang 325035,China)
出处 《湖北电力》 2021年第2期84-90,共7页 Hubei Electric Power
基金 温州市基础性软科学研究项目(项目编号:R20190024) 教育部人文社科规划基金项目(项目编号:20YJA790090)。
关键词 SPARK 短期负荷预测 深度神经网络 粒子群优化算法 并行处理 Spark short-term load forecasting deep neural network particle swarm optimization parallel processing
  • 相关文献

参考文献7

二级参考文献56

  • 1杨培宏,刘文颖.基于改进的Prony算法在线辨识电力系统低频振荡模式[J].低压电器,2008(5):47-51. 被引量:2
  • 2李金宝,屈百达,徐宝国,周小祥.基于自适应子带功率谱熵的语音端点检测算法[J].计算机工程与应用,2007,43(12):57-58. 被引量:5
  • 3李国杰.大数据研究的科学价值[J].中国计算机学会通讯,2012,8(9):8-15.
  • 4赵国栋,易欢欢,糜万军,鄂维南.大数据时代的历史机遇[M].北京:清华大学出版社,2013:前言.
  • 5Gantz J, Reinsel D. Extracting value from chaos [J]. Proceedings oflDCiView, 2011: 1-12.
  • 6GTM Research. The soft grid 2013-2020. Big data & utility analytics for smart grid-research excerpt [R/OL]. GTM, 2013. http-//www.giiresearch.com/reportJ gm257044-soft-grid-big-data-utility-analytics-smart-grid.h tml.
  • 7EPRI. Big data challenges for the grid: EPRI survey results and analysis Data analytics and applications demonstration newsletter[R/OL]. 2013. http://www. smartgridnews.com/artmardpublish/Business_Analytics/Bi g-Data-challenges-for-the-grid-EPRI-survey-results-and-a nalvsis.
  • 8EPRI. The whys, whats, and hows of managing data as an asset[R]. USA: EPRI, 2014.
  • 9IBM. Managing big data for smart grids and smart meters[R/OL]. IBM Software White Paper. http://www. smartgridnews.com/artman/publish/Business_Strategy/ Managing-big-data-for-smart-grids-and-smart-meters-524 8.html.
  • 10Oracle Utilities. Utilities and big data: A seismic shift is beginning[R]. An Oracle Utilities White Paper.

共引文献839

同被引文献124

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部